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ABSTRACT

Generative machine learningmethods are trained on raw data, modelling
the primary patterns that constitute typical examples. They enable the
production of high-quality artefacts in very complex domains and provide
useful models for generative systems, in particular in the visual arts and
video games. However, modelling a training data distribution perfectly is
less valuable for applications in art production and video games. In par-
ticular, our analysis of the use of generative models in visual art practices
motivates the need to increase the output diversity of generative models.
In this thesis, we focus on diversity, and similarity as one of its underlying
relations, in generative machine learning for visual arts and video games.
Wemake several contributions that are covered in four main chapters.
We coin the term active divergence to define strategies that consciously
break, tweak or otherwise intervene in data-driven generative modelling
methods for art production.We propose a framework for automating gen-
erative machine learning for artistic applications by handing over more
creative responsibilities to a generative system.
We systematically evaluate the expressivity of generative models, i. e. the
ability to produce a wide range of different types of artefacts.We provide
evidence for the limitationsof generativemodels in termsofoutputdiversity
and give recommendations for the use of generative model latent spaces in
quality diversity search.
We propose a diversity weights training scheme for generative models to
increase a model’s output diversity by taking into account the relative con-
tribution of individual training examples to overall diversity. In a proof-
of-concept study, we demonstrate the capability of our method to increase
diversity.
In two human participant studies, we evaluate how well computational
metrics of similarity can approximate the human perception of similarity
in tile-based video games. Our findings inform the selection of existing
similarity metrics and highlight requirements for the design of newmetrics
to substitute human similarity evaluation.
Our findings benefit the application of generative models in generative
systems, quality diversity search, art production and video games. Rather
than a ‘ground truth’ that needs to be modelled perfectly, we argue that
training datasets are merely a limited snapshot of a complex world with
inherent biases. To be useful for applications in visual arts and video games,
generative models require higher output diversity. Relatedly, our diversity
weights method could contribute to efforts of equity, diversity and inclusion
by reducing harmful biases in generative models.

6



ACKNOWLEDGMENTS

This thesis is a tangible artefact that documents the fruits of my effort over
several years. Not as well documented, however, is the impact the PhD
experience had on me and the changes it caused. Today, I am a different
person fromwhen I started, possibly a new and improvedme:more resilient,
patient andhumble, better at executing andeffective communication, better
at doing science, yet as curious as ever.
Many people have contributed to this improvement and helpedme along
the way. I am indebted tomy advisors Simon Colton, Laurissa Tokarchuk
and Christian Guckelsberger supporting, encouraging but also challenging
me.Thankyou tomyco-authors, inparticularTerenceBroadandAlexander
Hagg. Thank you to Sam, Vanessa and the whole modl.ai team for the
support duringmy internship.Thank you tomy examinersMatthewPurver
and Kazjon Grace for an enjoyable viva and the valuable feedback which
helpedmake this thesis much better.
Thank you tomy friends and colleagues at QMUL and IGGI fromwhom
I have learned a lot: Nick and Yelena, Remo, James, Bamford, Cristiana, the
whole IGGI 2019 cohort, Susanne, Simon Lucas, Diego, Raluca, Amaya and
the guys from the third floor, as well as manymore people from the QMUL
PhD community.
Thank you to my family and friends for their unconditional support.
Principalmente a Maro por su amor, compañía y por bancarme en todas.
Danke an die beste Mutter und den besten Vater der Welt, die niemals
anmir zweifeln und alle meine verrückten Pläne unterstützen. Danke an
Markus undMiriam für die Freundschaft über viele Jahre. Gràcies també
als amics a Barcelona per fer-me una persona més oberta i afectosa.
This dissertationwas supported by theEPSRCCentre forDoctoralTrain-
ing in Intelligent Games &Games Intelligence (IGGI) [EP/S022325/1].
Work was carried out as part of the Game AI Research Group, School
of Electronic Engineering and Computer Science, Queen Mary Univer-
sity of London. Further work was supported bymodl.ai during a research
internship.
Compute infrastructure was provided by the QueenMary University of
LondonApocrita HPC facility, supported by QMULResearch-IT (King,
Butcher & Zalewski, 2017).

7



CONTENTS

1 Introduction 17

2 Background 26
2.1 GenerativeModelling in Deep Learning . . . . . . . . . . 28
2.2 GenerativeModels as Creative Systems . . . . . . . . . . . 39
2.3 Use of GenerativeModels with Evolutionary Algorithms . 40
2.4 Evaluation of GenerativeModels . . . . . . . . . . . . . . 41
2.5 Measuring Output Diversity . . . . . . . . . . . . . . . . 46
2.6 Human Perception of Similarity . . . . . . . . . . . . . . 52

3 Artistic and Creative Uses of GenerativeModels 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Automating Generative Deep Learning for Artistic Purposes 66
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Limitations of Conventional GenerativeModelling 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Artefact Generation via Latent Space Search . . . . . . . . 94
4.3 Methodology and Setup . . . . . . . . . . . . . . . . . . . 98
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Increasing the Output Diversity of GenerativeModels 117
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Mode Balancing . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 The Vendi Score . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 DiversityWeights . . . . . . . . . . . . . . . . . . . . . . 125
5.5 Proof-Of-Concept Study onHand-Written Digits . . . . . 128
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Similarity Estimation for the Evaluation of Diversity 140
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3 Study 1: Human vs. Computational Similarity Evaluation . 153
6.4 Study 2: Interpretation of Similarity Dimensions . . . . . 173
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 RelatedWork 188
7.1 Data Biases inMachine Learning . . . . . . . . . . . . . . 190
7.2 De-biasing GenerativeModels . . . . . . . . . . . . . . . 191

8 Conclusions 193
8.1 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bibliography 200

8



L I ST OF F IGURES

Figure 1.1 Progress of image synthesis of human faces over the
years, from left to right, ordered by the year of the
pre-printmanuscript: (a) Original GAN (2014) on
Toronto Face Dataset (48 × 48 px) (b) DCGAN
(2015) on custom web-scraped dataset (64 × 64
px) (c) CoGAN (2016) on CelebA dataset (128 ×
128 px) (d) ProGAN (2017) on CelebA-HQ (1024
× 1024 px, displayed at 25%) . . . . . . . . . . . 19

Figure 1.2 Similarity is the basic relation between artefacts
(×) that underlies complex concepts like diversity
and novelty. . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.1 Three illustrative functions (top row)and theirfirst
derivatives w.r.t. the input (bottom row). Left: sig-
moid activation function of the discriminator’s fi-
nal network layer. At the beginning of training, the
discriminator assigns negative values (x-axis top
left subgraph) to samples produced by the gener-
ator, as they are easily distinguishable from training
examples, thus yielding a low output probability
(y-axis top left subgraph). Middle: saturating dis-
criminator loss. For negative input values, the out-
put is very close to or almost zero, providing very
small gradient updates for the generator. Right:
non-saturating discriminator loss. By changing the
optimisation objective, the discriminator provides
a better gradient update signal to the generator for
the early stages of training. . . . . . . . . . . . . . 32

Figure 3.1 Example for cross-domain training : StyleGANtrained
on the FFHQdataset (Karras, Laine&Aila, 2019),
fine-tuned on a custom beetle dataset. Reproduced
with permission fromM.Mariansky. . . . . . . 60

Figure 3.2 Samples fromBroad,Leymarie andGrierson(2020)
of StyleGAN fine-tuned with a negated loss func-
tion. In its state of ‘peakuncanny’ themodel started
to diverge but has not yet collapsed into a single un-
recognisable output. . . . . . . . . . . . . . . . . 61

Figure 3.3 Seriesof imageedits applied to threedifferentgenerative
adversarial networks (GANs) with themethod from
Härkönen et al. (2020) . . . . . . . . . . . . . . . 62

9



LIST OF FIGURES 10

Figure 3.4 Automated generative deep learning (DL) frame-
work in three stages: preparation (blue), configur-
ation (yellow) and presentation (green). The flow
starts in the top left and follows the arrows. Indi-
vidual steps illustrate targets for automation (rectan-
gular boxes). . . . . . . . . . . . . . . . . . . . . 77

Figure 3.5 Image generated by the Big Sleep Colab notebook
for the prompt “TheMelbourne skyline in pastel
colours”. Note the appropriate presentation of con-
tent and style, and additional pastel strokes in the
sky as an unprompted innovation. . . . . . . . . . 85

Figure 4.1 Local competition in quality diversity (QD). Search
is performed in parameter space. Candidate solu-
tions are converted from their genetic into their
phenotypic representation, i. e. from parametric
descriptors into artefacts. Candidates compete loc-
ally in feature space andareonly added to thearchive
if they improve the quality score compared to their
immediate neighbourhood of individuals. . . . . 96

Figure 4.2 Updating the Voronoi archive. The size of the dots
indicates fitness, new individuals are marked with
a cross and pairs of closest individuals are marked
red. The Voronoi Elites (VE) approach allows for a
fixed archive size, independent of its dimensional-
ity, making experiments more controllable. In this
example, the maximum number of niches is set to
six.When a new candidate individual is added to
the archive, the pair of closest individuals is com-
pared. The worse of the two is removed from the
archive and the individual with higher fitness is
kept in the archive. The borders between niches
drawn here are for visualisation only, to illustrate
the range of influence of individuals and how they
are changed by archive updates. . . . . . . . . . . 97

Figure 4.3 Shape encoding, representation, conversion and
evaluation: (a) 16 genes define the position of (b)
eight control points with polar coordinates in a Eu-
clidean plane. (c) Smooth outlines are formed by
locally interpolated splines. (d) A shape is conver-
ted from its genetic into its phenotypic representa-
tion through a discretisation step that renders the
smooth shape onto a square grid of 64× 64 pixels,
producingabitmap image representation.Thequal-
ity of a shape is evaluated by first (e) determining
its boundary and then (f ) measuring its symmetry
from the centre of mass. . . . . . . . . . . . . . . 99



LIST OF FIGURES 11

Figure 4.4 We combine a variational auto-encoder (VAE) and
VE into a generative system in twophases. First, ini-
tialisation: (1) an initial set of genomes is generated
and (2) converted into shape bitmaps which are
used to (3) train a VAE. We compare two initialisa-
tion scenarios: starting from scratch with random
initialisation (R) and continuation (C ) where the
system starts with a pre-determined set of candid-
ates, e. g. fromaprevious run. Second, optimisation
loop: (4) VE iteratively updates the archive of can-
didates. We compare two setups of this loop: the
VE performs search either in parameter space (PS )
or in the VAE latent space (LS ). . . . . . . . . . . 100

Figure 4.5 Architecture of a convolutional variational autoen-
coder. . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 4.6 (a) Generative factors used to create datasets in
this work. (b–e) Four tasks on which we compare
the performance of latent space search with para-
meter search, the red rectangles indicate artefacts
that either have been left out of a dataset (b, c, d)
or are not available (e). (f ) All base shapes used in
this work. For illustration, visualisations here only
show 100 of the 256 shapes. . . . . . . . . . . . . 105

Figure 4.7 Reconstruction errors (log scale) and latent dis-
tances (linear scale) for tasks (a) through (d) over
all models across all five base shapes and three dif-
ferent latent space sizes (4, 8, 16 dimensions). Box
plots showmedian values, 25th and 75th percent-
iles and whiskers indicating minimum and max-
imum values. All tested differences were statistic-
ally significant (two-sample t-test, p < 0.01) and
are marked with an asterisk. . . . . . . . . . . . . 108

Figure 4.8 VAE validation losses during training on 10% held-
out validationdata. Curves showmedian values and
the 10/90% confidence intervals. . . . . . . . . . 108

Figure 4.9 Visualisation of the VAE latent spaces (eight di-
mensions projected down to twowith t-distributed
Stochastic Neighbourhood Embedding (t-SNE)).
Shapes in yellow represent training examples, while
blueones are fromthe task’shold-out set.All shapes
were reconstructed by the model. Black outlines
show the ground truth shapes and coloured fills
the reconstructed shapes. Differences between the
outlines and fillings correspond to reconstruction
errors. . . . . . . . . . . . . . . . . . . . . . . . . 109



LIST OF FIGURES 12

Figure 4.10 Pure diversity (top) and total sum of fitness (bot-
tom)of artefact setsofparameter search (PS, green)
and latent space search (LS, blue). VAEswere sep-
arately trained with 8, 16 and 32 latent dimensions
(subplots). In every subplot, the two left-hand bars
correspond to random initialisation (R) and the
two right-hand to the continuation (C ) configur-
ations of the experiments. Box plots showmedian
values, 25th and 75th percentiles and whiskers in-
dicatingminimumandmaximumvalues.All tested
differenceswere statistically significant (two-sample
t-test, p < 0.01) and are marked with an asterisk. . 110

Figure 4.11 Searching the parameter space produces amore di-
verse set of artefacts than searching the VAE latent
space. In both cases, the same VAE latent dimen-
sions were used as niching dimensions of the QD
algorithm.Artefacts shown here (512 total) repres-
ent the complete VE archive from a single run with
one of the base shapes. . . . . . . . . . . . . . . . 112

Figure 4.12 Expansion in a 16-dimensional latent model (pro-
jected to two dimensions with t-SNE).We interpret
the reconstruction error of a shape as its distance
from the latent surface. Samples from parameter
search (PS, green) tend to extrapolate away from
the latent distribution (LS, blue). . . . . . . . . . 114

Figure 4.13 Five worstmodel reconstructions (blue) of left-out
shapes (red) from each task b–d (top to bottom
rows). Overlaps (black) indicate pixels that were
correctly reconstructed. Reconstruction errors are
shown as red (not reconstructed) and blue pixels
(erroneously generated) . . . . . . . . . . . . . . 115

Figure 5.1 Mode collapse: themodel does not cover all modes in
the data distribution.Mode coverage: the data distri-
bution’s modes are modelled as closely as possible
w.r.t. their likelihood.Mode balancing : the model
covers all modes but with equal likelihood. . . . . 122

Figure 5.2 Digits ordered by diversity weight (index above
with label inbrackets,weightbelow).First tworows:
pair 0-1, twomiddle rows: pair 3-8, last two rows:
pair 4-9. Odd rows: twelve highest weighted, even
row: twelve lowest weighted. . . . . . . . . . . . . 130



LIST OF FIGURES 13

Figure 5.3 Performance comparison of our method (DivW)
withdifferent loss termbalances (γ) against a stand-
ard GAN, trained on three digit pair datasets (blue
circles: 0-1, green crosses: 3-8, red diamonds: 4-
9) with six measures: VS, PR and Inception Score
(IS) (higher is better), as well as standard FID and
weighted FID scores (lower is better). Means and
95% confidence intervals over five random seeds.
Individual datapoints show means over five ran-
dom sampling repetitions. The hyperparameter
γ provides control over the trade-off between di-
versity and typicality. . . . . . . . . . . . . . . . . 134

Figure 5.4 Random samples for all digit pairs (top row: 0-1,
middle: 3-8, bottom: 4-9) from the standardmod-
els (left column) and our DivWmodels with differ-
ent lossbalances (γ).Thehyperparameterγ provides
control over the trade-off between diversity and
typicality. . . . . . . . . . . . . . . . . . . . . . . 135

Figure 5.5 Comparison of the output diversity (y-axis) for
different sample sizes (x-axis) of diversity weights
(DivW) models and standard GANmodels against
the diversity of the training dataset. Means and
standard deviations over scores were computed for
five random initialisations (dataset and models)
and five random samples (models) for each initial-
isation. . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 6.1 Tripletquestions: twoalternative forcedchoice (2AFC).
Participants are presented with a reference stimu-
lus (top) and have to choose between two options
(bottom). Questions can not be skipped. . . . . . 147

Figure 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 6.3 Five random example stimuli for each condition.

The first two rows show levels fromCandy Crush
Saga and the last two levels from the Legend of
Zelda, in the image and pattern representation, re-
spectively. Each stimulus is randomly drawn from
the respective subset identified through our three-
stage selection procedure. . . . . . . . . . . . . . 155

Figure 6.4 Elbow plots for t-STE goodness of fit in all condi-
tions. We choose 4 as the number of dimensions
(horizontal axis) for the embeddings based on the
evaluation of overall normalised errors (vertical axis).160

Figure 6.5 Mean squared errors (lower is better; horizontal
axes)whencomparing thepairwise similaritymatrices
ofdifferent candidatemetrics (vertical axis) to those
derived fromtheperceptual embeddingsof the four
experimental conditions (subplots). . . . . . . . . 164



LIST OF FIGURES 14

Figure 6.6 Cohen’s kappa (higher is better): inter-rater agree-
ment between human participants and computa-
tionalmetricsover all experimental conditions (sub-
plots). Summarieshere showboxplotswithmedian
values and the interquartile ranges. Full raincloud
plots can be found in Section 6.3.6. . . . . . . . . 166

Figure 6.7 Cohen’s kappa (higher is better): inter-rater agree-
ment between human participants and computa-
tionalmetricsover all experimental conditions (sub-
plots). Each data point indicates Cohen’s kappa
comparing the similarity judgements of a single
participant against those of a given metric on the
same subset of triplets. Each raincloud plot features
individual data points as dots, the estimated ker-
nel density over the data as a curve above the data
points, and a box plot with the sample minimum,
maximum andmedian, as well as the first and third
quartiles and outliers. . . . . . . . . . . . . . . . . 169

Figure 6.8 Unachieved agreement (lower is better): difference
of the maximum value and Cohen’s kappa of the
inter-rater agreement between human participants
and computational metrics over all experimental
conditions (subplots). Each data point indicates
Cohen’s kappa subtracted from κmax, when com-
paring the similarity judgements of a single parti-
cipant against those of a givenmetric on the same
subset of triplets. Each raincloud plot features in-
dividual data points as dots, the estimated kernel
densityover thedata as a curveabove thedatapoints,
and a box plot with the sample minimum, max-
imum and median, as well as the first and third
quartiles and outliers. . . . . . . . . . . . . . . . . 170

Figure 6.9 Quantity disagreement (lower is better) between
humanparticipants andcomputationalmetricsover
all experimental conditions (subplots). Each data
point indicates disagreement between a single par-
ticipant and a given metric on the same subset of
triplets.Each raincloudplot features individualdata
points as dots, the estimatedkernel density over the
data as a curve above the data points, and a box plot
with the sample minimum, maximum andmedian,
as well as the first and third quartiles and outliers. 171



Figure 6.10 Allocation disagreement (lower is better) between
humanparticipants andcomputationalmetricsover
all experimental conditions (subplots). Each data
point indicates disagreement between a single par-
ticipant and a given metric on the same subset of
triplets.Each raincloudplot features individualdata
points as dots, the estimatedkernel density over the
data as a curve above the data points, and a box plot
with the sample minimum, maximum andmedian,
as well as the first and third quartiles and outliers. 172

Figure 6.11 Labelled embeddingdimensions for condition ccs-img 176
Figure 6.12 Labelled embedding dimensions for condition ccs-pat 177
Figure 6.13 Labelled embedding dimensions for condition loz-

img . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 6.14 Labelled embedding dimensions for condition loz-pat 179

L I ST OF TABLES

Table 5.1 Vendi Score (VS) of digit pair datasets (mean ±
std dev) with uniform and diversity weights with
different loss balances γ . . . . . . . . . . . . . . 129

Table 5.2 Architecture of generator and critic networks. Up-
sampling convolutional layers (ConvTranspose)
have kernel size 4 × 4, stride 2, padding 1, dila-
tion 1. Convolutional layers (Conv) have kernel size
5× 5, stride 2, padding 2. . . . . . . . . . . . . . . 131

Table 5.3 Training hyperparameters . . . . . . . . . . . . . 132
Table 5.4 Relative increase in output diversity (VS) ofmodels

trained with our DivWmethod over standard GANs 136
Table 6.1 Selection of image embeddings, metrics andmeas-

ures (with optional configurations) compared in
this work. Note that the image embeddings and
measures require additional transformations to be
used as similarity metrics (Section 6.2.2). . . . . . 149

Table 6.2 Self-reportedexperiencewith tile-basedvideogames
of participants in study 1 (blue) and study 2 (red).
Participants selected one option in each row, and
percentages in each row add up to 100%. . . . . . 158

Table 6.3 Consensus labels for dimensions of the perceptual
embeddings (rows) as proposed by individual focus
groups per condition (columns) in study 2 (Sec-
tion 6.4). . . . . . . . . . . . . . . . . . . . . . . 181

15



L I ST OF ALGORITHMS

Figure 1 Vendi Score DiversityWeight Optimisation . . . 126

L I ST OF ACRONYMS

ANN artificial neural network

AutoML automatedmachine learning

CC computational creativity

CLIP contrastive language-image pre-training

DEI diversity, equity, and inclusion

DivW diversity weights

DL deep learning

DPM diffusion probabilistic model

FID Fréchet Inception Distance

wFID Weighted Fréchet Inception Distance

GAN generative adversarial network

IS Inception Score

LDM latent diffusionmodel

LIGM large image generationmodel

ML machine learning

MMO multi-modal optimisation

MS Mode Score

NAS neural architecture search

PCG procedural content generation

PD Pure Diversity

PR Precision–Recall

QD quality diversity

SOM Self OrganisingMap

t-SNE t-distributed Stochastic Neighbourhood Embedding

VAE variational auto-encoder

VE Voronoi Elites

VS Vendi Score

WGAN Wasserstein GAN

16



Chapter 1

INTRODUCTION

Generative machine learning, through continuous technical improvements

and the scalingof compute resources, hasmade it easier thanever togenerate

different varieties of media content: images (Rombach et al., 2022) and

videos (OpenAI, 2024), music (Evans et al., 2024) and speech (Lux et

al., 2024), as well as three-dimensional objects (J. Gao et al., 2022) and

scenes (Bautista et al., 2022). Generative machine learning methods are

trained on raw data, modelling the primary patterns that constitute typical

examples, andyield a fullyworkinggenerator that canproduce artefacts very

similar to these training examples. Suchmodels are useful for generative

systems, e. g. for procedural content generation in video games (PCGML;

Summerville et al., 2018). In contrast, designing generative systems byhand

requires expert knowledge, manual analysis of relevant patterns, a lot of

effort and continuous evaluation of the generator and its output. Partially

automating this process through automatic program synthesis from raw

data via machine learning gives significant benefits at scale. Generative

modelling thus enables the production of high-quality artefacts in very

complex domains whichwould otherwise be difficult to generate at a similar

degree of fidelity.

To better understand the term fidelity, Artefact fidelitywe can consider its use in the

context of music. There, the term high fidelity (hi-fi) is used to describe the

reproduction with electrical equipment of high-quality sound that is very

similar to the sound produced by the original instruments. For example,

when the recording of an orchestra is played from a vinyl disc on a record

player. For a sound reproduction to be of high fidelity, the audio-sensory

experience of the reproduced sound has to be faithful to the live experi-
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ence.We adopt this term to describe the qualities of generated samples that

exhibit a high likeness to the training examples in a dataset.

Researchers have directed their efforts Distribution fittingprimarily to push for improve-

ments in artefact fidelity. In the image domain, for a dataset of natural

images, high fidelity generally means high photorealism. This is illustrated

well by the rapid progress in the technological capabilities to generate hu-

man faces (Figure 1.1). To achieve this, machine learning researchers focus

on developing algorithms that can faithfully model a training dataset. That

is to say, the model shouldmatch the target distribution as closely as pos-

sible. Generative modelling in deep learning is therefore generally defined

as a distribution fitting problem. For example, to produce a colour image, a

model needs to determine the correct value for every pixel in three channels

(RGB), often dependent on the values of neighbouring pixels. The com-

plex high-dimensional target distribution is thus the distribution over pixel

values as defined by the example images in the training dataset.

This thesis rests on the observation that, while modelling the training

data distribution perfectly is beneficial for some applications, it is less valu-

able in an artistic setting. Visual artists embraced early image-generation

techniques, in particular GANs, precisely because their output is imperfect.

In contrast to the efforts of engineers to continuously increase the fidelity

of model outputs, some artists consciously work against perfection, actively

diverging from the target distribution. Rather than reproducing artefacts

with high similarity to existing examples, imperfect generative models can

yield unexpected, sometimes novel and potentially culturally valuable arte-

facts. Creative behaviour, judged by its results, is conventionally defined

as producing novelty, surprise and value (Boden, 2004). Similar standard

definitions highlight originality and effectiveness (Runco & Jaeger, 2012). The

benefit for artistic applications, and creative tasks in general, thus lies in the

production of artefacts that meet this definition. The interactions with a

generative model for this purpose can be considered acts of co-creativity.

Human-computer co-creativity is oneof themajor themesof computational

creativity (CC), which has been defined as “the philosophy, science and

engineering of computational systems which, by taking on particular re-
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(a) 2014 (b) 2015 (c) 2016 (d) 2017 (scaled down to 25% of the full size)

Figure 1.1: Progress of image synthesis of human faces over the years, from left to
right, ordered by the year of the pre-print manuscript:
(a) Original GAN (2014) on Toronto Face Dataset (48 × 48 px)
(b) DCGAN (2015) on customweb-scraped dataset (64 × 64 px)
(c) CoGAN (2016) on CelebA dataset (128 × 128 px)
(d)ProGAN(2017) onCelebA-HQ(1024× 1024px, displayed at 25%)

sponsibilities, exhibit behaviours that unbiased observers would deem to

be creative” (Colton&Wiggins, 2012).

Instead of novelty, in this thesis, we primarily focus on diversity and the

closely related concept of similarity as the foundational relation that nov-

elty and diversity are built on. In the following, wemotivate this focus on

diversity and briefly define the concepts and their relation to each other.

Thediversityof a collection Diversityof artefacts indicates theoverall dissimilarity in

relevant qualities between the artefacts. The important underlying relation

of diversity is thus the similarity of artefacts.

The novelty of an individual artefact Noveltyis typically measured relative to a

collection of artefacts, as a one-to-many relation. It indicates how dissimilar

in relevant qualities a novel artefact is to existing artefacts. The novelty of an

artefact can also be interpreted as the amount of diversity that the artefact
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Similarity
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Figure 1.2: Similarity is the basic relation between artefacts (×) that underlies
complex concepts like diversity and novelty.

adds to a collection. That is to say, when an artefact is added to a collection

that is similar to the other artefacts, diversity will only increase slightly. The

newly added artefact thus has low novelty relative to the artefacts in the

collection.Vice versa, an artefact of highnoveltywill increase the collection’s

diversity by a large amount because it does not resemble the other artefacts

in the collection.

Similarity quantifies the likeness Similarityin relevant qualities of two artefacts in a

one-to-one relation. Similarity can also be quantified for a one-to-many

relation between an individual artefact a and a collection of artefactsB or

a many-to-many relation between two collectionsA andB. In these cases,

a collection will be represented by the qualities of an individual artefact

from the collection, existing or non-existing, e. g. the artefact b ∈ B with

minimum ormaximum similarity to the single artefact a, the average of all

artefacts or, as a prototypical example, the artefact closest to the average

or the centroid of the collection. The similarity of a collection is thus still

determined through the artefacts it contains. Similarity is the basic relation

upon which themore complex relations of novelty and diversity are estab-

lished (Figure 1.2). That is to say, tomeasure novelty and diversity, essential

properties for creativity, we need to estimate similarity.

The similarity, diversity and novelty of an artefact alone, however, are not

enough to guarantee artefact typicality (Ritchie, 2007), i. e. the likeness of

an artefact to the typical characteristics of a domain. For example, when we

are trying to generate poems, wemight expect the text to follow a certain

type of register, rhyming scheme, or language. Similarly, we would expect
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images of human faces to follow the conventional composition of eyes, noses

andmouths. In generative machine learning, these domain requirements

are usually enforced by the conventional learning objective (distribution fit-

ting), which ensures that the model distribution approximates a training

data distribution. Yet, as mentioned before, this objective alone emphas-

ises artefact typicality. Increasing the output diversity of a model requires

extending this objective.

Apart from the visual arts, generative models are used in many other

applications, e. g. in video games for the generation of levels and other assets

(Volz et al., 2018). In robotics, generative models provide a compressed

search space over behaviour repertoires which allows for the optimisation of

sequences of movement (Cully &Demiris, 2018a). For the synthesis of bio-

logically active small molecules, generative models learn commonmolecule

structures from data and thus provide a compact but expressive generative

space to produce candidate molecules (Shin et al., 2021). Architects and

industrial designers benefit from generative models as creativity support

tools to survey the possibility space of a design problem (Bradner, Iorio

&Davis, 2014). Crucially, rather than being the final product, generated

artefacts serve as a starting point for further design iterations.

As multi-solution tasks, these applications benefit from several candid-

ates that cover the full range of possibilities, rather than a single optimised

solution.What use would it have if we could generate many variations of

the perfect video game level but only with barely noticeable differences?

Ideally, we would like to be able to adjust the output diversity of a gener-

ative model to the requirements of a given application.While it is easy to

reduce diversity, in order to increase the output diversity, an approach has to

overcome the inherent limitations of conventional generative modelling.

In each chapter of this thesis, we address one of the following research

questions which focus on the different aspects of diversity in generative

machine learning for visual arts and video games.

RQ 1: Research questionsHow can generativemodels support creative applications?

→Chapter 3
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RQ 2: Howare the conventional generativemodellingapproaches

limited in terms of output diversity?→Chapter 4

RQ 3: How can the output diversity of generative models be

increased?→Chapter 5

RQ 4: How can the measurement of diversity in generative ma-

chine learning be aligned with the human perception of

diversity?→Chapter 6

The following is a brief overview of each chapter. In Chapter 2, Chapter 2
Background

we give an

introduction to generativemodelling in deep learning, themost popular ap-

proaches used in this thesis and their optimisation objectives, to support our

case for higher output diversity. Conventional methods in generative ma-

chine learning are primarily concernedwith faithfully capturing a given data

distribution.While this may be useful for some downstream applications,

we argue that this narrow objective, lacking considerations for diversity, is

limiting for creative and artistic work, as well as detrimental to algorithmic

fairness and equitable representation.We further discuss the conventional

approaches to evaluating generative models.

We further set the scene for this thesis Chapter 3
Artistic and Creative
Uses of Generative
Models

in Chapter 3 by analysing the

application of generative models to art production and creative tasks. Our

findings support RQ 1 andmotivate our work through the specific needs

that arise from these use cases. Objectives in artistic and creative contexts

differ from conventional applications in two ways. First, in this setting,

learning from data is necessary to achieve high artefact typicality. However,

rather than reproducing artefacts similar to the training examples, creative

tasks often require the synthesis of novel artefacts. Second, insteadof looking

for a single optimised ‘solution’, people often seek to generate a variety of

different candidate artefacts fromwhich they can select for further design

iterations, thus surveying the design space (Bradner, Iorio &Davis, 2014).

The objective of using generative models in artistic and creative settings

is thus to (1) facilitate the artefact synthesis in domains that are otherwise

difficult to define manually, (2) generate a diverse set of artefacts and (3)

enable the production of novel artefacts.
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Ourmotivation by use-cases demonstrates this thesis as an example of

Use-inspired basic
research

use-inspired basic research (Stokes, 2011; Dudley, 2013). That is to say, we

perform fundamental research on the algorithms that optimise and evaluate

generative machine learning models with consideration for their use in creative

applications. In this context, we critique the conventional development

of models, analyse their limitations regarding output diversity andmake

contributions that result in more useful models for downstream tasks that

demand diverse output.

Conventional statistical data-drivenmodels Chapter 4
Limitations of
Conventional
Generative
Modelling

depend largely on the char-

acteristics of a given dataset. The variety of artefacts that a trainedmodel

can produce is dependent on the number of different training examples. In

Chapter 4, we present a principled approach to evaluating the expressivity

of generative models, i. e. the ability to produce a wide range of different

types of artefacts. For this, we compare the performance of quality diversity

search in a generative model’s latent space against the baseline parametric

design space.We find that the learned latent space yields artefacts of lower

diversity than the correspondingmanually-defined parametric space. Our

findings contribute to RQ 2 and to understanding the limitations of gener-

ative models in terms of output diversity, justifying the following efforts to

increase the output diversity of generative models.

In Chapter 5, Chapter 5
Increasing the
Output Diversity of
GenerativeModels

we frame the limitation in output diversity of a generative

model as a problem of data bias, where the likelihood under the model of a

type of artefact is proportional to its prevalence in the training data. That is

to say, the more often a type of artefact appears in a dataset, the more likely

this type is going to be generated.We thus deal with a data imbalance bias.

While there is no uniformly accepted way Data bias in
generative machine
learning

of dealing with data bias in

generative machine learningmore generally, and CC specifically, two fun-

damentally different approaches can be distinguished by their target of

intervention, proposing to either (1) fix the data or (2) adjust the learning

algorithm.We discuss both in the following paragraph.

In the first approach, data bias is addressed by improving the quality of a

dataset, typically by gatheringmore and better data or by carefully curating

the existing dataset and removing low-quality examples. However, two is-
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sues complicate this approach. First, it is not always possible or practical to

augment a dataset since collecting, curating and pre-processing new data is

notoriously laborious, costly, or subject to limited access. Second, to address

a specific bias, we require knowledge about the type of data examples that

can reduce the bias. For example, even when a dataset can be augmented

with synthetic data, the characteristics of the specific bias have to be identi-

fied and described, e. g. via text prompts for sampling from a text-to-image

model (Chang et al., 2023). This is easier to achieve for supervised datasets

with clear class separations, but can still become infeasible when fixing a

bias that affects a single class implies adding examples to all other classes

(see the discussion on related data bias work in Section 7.1). In unsupervised

cases and generative machine learning in particular, due to a lack of clearly

separable classes, inter-dependencies between examples become evenmore

complicated, requiring more sophisticated approaches. Instead, the altern-

ative is to adjust the methodology of learning from data such that a known

data bias ismitigated. In this thesis, we focus on this strategy, addressing the

representation imbalances between a dataset’s majority andminority fea-

tures by intervening in the learning process. Diversity weights
method

We propose an algorithm that

determines the individual contribution of training examples to the overall

diversity of the dataset, thus increasing a model’s output diversity through

a diversity-weighted training scheme. Our work builds on the Vendi Score

family of diversity measures (Friedman & Dieng, 2023; Pasarkar & Di-

eng, 2024). In a proof-of-concept study, we show the effectiveness of this

method. Our results highlight a trade-off between artefact typicality and

diversity.We contribute toRQ3by demonstrating how the output diversity

of generative models can be increased.

For most artificial intelligence andmachine learning applications Chapter 6
Similarity
Estimation for the
Evaluation of
Diversity

to be

useful to people, they need to match human expectations and cognition,

and in the image domain in particular human visual perception.We sup-

port RQ 4 and the grounding of generative diversity in human perception

in the following way. As laid out above, we identify similarity as a founda-

tional relation between artefacts upon whichmore complex relations such

as novelty and diversity are built. In particular, the Vendi Score measure
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used in our diversity weights method requires estimating the similarity of

artefacts in a collection to quantify its diversity.We take a step towards a

better understanding of human similarity perception and howwell it can

be approximated by computational measures of similarity. We focus on

the perception of similarity in tile-based video game levels. In two human

participant studies, we collect data that allows us to compare computational

approximations of similarity estimation to the human perception of simil-

arity in this specific domain.

Work that is related to our contributions Chapter 7
RelatedWork

and thematically relevant to

the main themes of the thesis is discussed toward the end of the thesis

in a dedicated Chapter 7. This includes an overview of diversity measures,

commondata biases inmachine learning and de-biasingmethods to address

these shortcomings. Other works relevant to the methodologies of our

contributions are discussed within the individual chapters.

We conclude the thesis Chapter 8
Conclusions

with a summary of the contributions in Chapter 8,

covering the generated knowledge, proposedmethodologies and research

artefacts such as code and data repositories.We further discuss future aven-

ues of research.



Chapter 2

BACKGROUND

In this chapter, we provide all the necessary background information to

contextualise the work performed and understand the methods used in the

present research. For this, we first give an introduction to generativemodel-

ling in deep learning, themost popular approaches and their objectives.We

next discuss how frameworks for creative systems apply to generativemodel-

ling.We then discuss the conventional approaches to evaluating generative

models, including approaches to measuring output diversity. Finally, we

review the literature on the human perception of similarity, a fundamental

part of the human-centred evaluation of diversity.

Wemotivate the research presented in this thesis by critiquing the field’s

canonical practice and highlighting important shortcomings. First, none

of the evaluationmeasures is suited for independent assessment, i. e. they

require the training dataset for reference. Second, the predominant model-

ling paradigm is primarily concerned with faithfully capturing a given data

distribution.While this may be useful for some downstream applications,

we argue in this thesis that this narrow objective, lacking considerations for

diversity, is limiting for creative and artistic work, as well as detrimental

to algorithmic fairness and equitable representation. Crucially, at the time

when research presented in this thesis began (late 2019), there was little

to no consideration for objective diversity in generative machine learning.

Only more recently, some progress has been made in related work (Sec-

tion 2.5) with the proposals of dataset-independent measures of diversity

andmodifications of training algorithms to de-bias generative models (Sec-

tion 7.2).
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Following the statistical terminology, Terminologywe use sample to denote a single data

point taken to estimate the characteristics of a larger population. In the

context of this thesis, we are primarily concerned with the output of a gen-

erativemodel.We thus take samples from amodel to estimate themodelled

distribution. In contrast, an example is a single data point from a dataset used

to optimise a model’s parameters with a learning algorithm. Using these

two terms, we delineate what is an output from amodel (sample) and what is

an input to a model (example). The term artefact conventionally describes a

human-made object that provides insight into the culture of its creators and

users.We extend the termhere to include objects that aremachine-made for

the benefit of humans. Arguably, if humans are involved in the production

of themachine, the objectsmade by themachinemay still reflect the culture

of the humanmachine-creators. The output of a generative model can thus

simultaneously be a sample and an artefact.

In the equations Notationof this chapter, we employ a common notation. The

natural exponential function exp(x) = ex is not expanded for readability.

Unless otherwise noted, we use the natural logarithm log with base e. E[X]

denotes the expected value ofX .∇x stands for a function’s gradient with

respect to x. We define the standard normal distributionN (0, I) for the

general multi-dimensional case where I is the identity matrix indicating no

correlation between the independent variables.P andQ refer to the probab-

ility distributions of the real data and the generated data respectively. The

Kullback-Leibler divergenceDKL fromQ to P is defined as the expectation

of the logarithmic difference between the probabilities P andQ, where the

expectation is taken using the probabilities P .

DKL
(
P ‖Q

)
=

∑
x∈X

P (x) log
P (x)

Q(x)
(2.1)

2.1 GENERATIVE MODELLING IN DEEP LEARNING

The purpose of a generative model is to approximate the probability distri-

bution p(X) of the dataX or, in the conditional case, the joint probability
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p(X,Y ) of data X and labels Y . That is to say, we want to find the dis-

tribution, our model, that best describes the given dataset. In contrast, a

discriminative model only captures a conditional probability p(Y |X) over

labels Y given the dataX .

Some natural observations (e. g. the height of a group of people) can be

modelled with simple theoretical distributions (e. g. Gaussian). But these

are not flexible enough to approximate the distribution of more complex

domains likenatural and synthetic images. Inparticular, because the random

variables are not independent. Here we will thus focus on deep learning

techniques that use an artificial neural network toparameterise a probability

distribution pθ(X), and typically apply gradient-based methods such as

back-propagation to optimise the parameters θ. The likelihood LLH(x, θ) is

the joint probability of the observeddatax ∈ X given themodel parameters

θ.Maximum likelihood estimation (MLE) evaluates the likelihood function

for a specific configuration of the model parameters.

We can view a generative model and interpret its utility from different

perspectives. Conventionally, it is seen as a way to approximate a given tar-

get distribution and its quality corresponds to the distance between the

model and the target distributions. Generativemodelling from rawdata can

be related to compression. To find regularities in the data, separating signal

from noise, it is necessary to identify and understand the underlying pat-

terns. The ability to describe patterns more compactly allows for compression,

describing the process that generates the observed patterns. The shortest

possible description, in terms of a computer program, that can generate the

raw data defines the data’sKolmogorov complexity. While the artificial neural

network used in a generative model is often over-parameterised and thus

likely far from the shortest description, a model’s latent encoding space can

be seen and used as a compressed representation for the training examples

which preserves their semantic relations. However, most generative models

are incomplete compression algorithms with only a decoder (generator),

lacking an encoder. From the point of view of search, a generative model

enables interaction with the examples from the training dataset in an indir-

ect and augmented way.We can find artefacts that resemble data examples,



BACKGROUND 30

recombining common features through interpolation and extrapolation. In

the context of CC therefore, a generative model is a very capable generator,

giving access to domains and types of artefacts that would otherwise be

difficult to re-create.

Early deep generative models, most prominently Deep BoltzmannMa-

chines (DBM) (Salakhutdinov &Hinton, 2009), provide a parametric spe-

cificationof aprobabilitydensity function andare trainedbymaximising the

log-likelihood of the data. For many practical applications, however, model

parameters and latent variables are high-dimensional. Their summation or

integration and thus the calculation of the exactmarginal likelihood is often

computationally intractable. The limitations of Boltzmannmachinesmotiv-

ated the development of GANs, a type of implicit generative model, that pro-

duce artefacts of high fidelity without an explicit likelihood representation.

Developed almost in parallel, VAEs implement an auto-encoder-based ap-

proach anduse variational Bayesianmethods to approximate the intractable

integrals, maximising the evidence lower bound on the marginal likelihood.

These advancements proved to be crucial in demonstrating the potential

of generative modelling. Other techniques, e. g. vision transformers (Esser,

Rombach&Ommer, 2021; Dosovitskiy et al., 2022) and diffusionmodels

(Dhariwal &Nichol, 2021; Rombach et al., 2022) have since continued to

push the boundaries of generative capabilities. But we focus here on the

two aforementionedmodelling approaches, GANs and VAEs, for their wide

adaptation and to limit the scope to methods used in the work presented in

the following chapters.

2.1.1 GENERATIVE ADVERSARIAL NETWORKS

Adversarily trained generative models, more commonly known as gener-

ative adversarial networks (GANs), consist of two networks: a generator

and a discriminator or critic. As implicit generative models, GANs do not

explicitly model the likelihood function. Instead, the generator is trained

to produce samples that resemble examples from the training dataset, ef-
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fectively mapping from a latent space to the feature spaceG : Z → X . The

discriminator is simultaneously trained to distinguish generated samples

from training examples, mapping from feature space to an output probabil-

ityD : X → R[0,1]. As a result, GANs do not provide an encoding function

that maps from feature space to latent space, making it difficult to recover

the latent encoding of a data point.

The generator network is defined as a differentiable functionG(z; θG) =

x̃with parameters θG that learns to transform a sample from a known noise

distribution z ∼ pZ , typically a standard normal N (0, I), to the target

distribution. Given both data examples drawn from the training dataset

x ∼ p and samples produced by the generator, the discriminating network

D(x; θD) = ỹ with parameters θD transforms a given input into a Bernoulli

distribution, a discrete probability distribution with Boolean-valued out-

comes that indicates with probability ỹ that the input x belongs to the

training dataset. During training, we use the target labels y = 0 for gener-

ated samples and y = 1 for training examples. The discriminator is trained

to maximise the probability of assigning the correct labels. Simultaneously,

the generator is trained to maximally confuse the discriminator, such that

it equally assigns a probability ofD(x) = 0.5 to both training examples and

generated samples. The full GAN objective is given below.

Objectivemin
G
max
D

E
x∼p

[
log(D(x))] + E

z∼pZ
[log(1−D(G(z)))

]
(2.2)

Note the similarities to the definition of the Bernoulli distribution. The

GAN objective is the sum in log space (product in linear space) of the expect-

ation that data examples x are classified as coming from the dataset and the

expectation that generated samples x̃ = G(z; θG) are synthetic.

Due to the adversarial setup of the generator and discriminator networks

and the minimax training objective above, the GAN framework is often

framed in game theoretic terms as a zero-sumgamebetween twoopponents,

whereone’s gain is another’s loss. Since there isnoexplicit density estimation

of the dataset, the generator depends entirely on the gradient signal from

the discriminator for optimisation. However, at the beginning of training,
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Figure 2.1: Three illustrative functions (top row) and their first derivatives w.r.t.
the input (bottom row). Left: sigmoid activation function of the dis-
criminator’s final network layer. At the beginning of training, the dis-
criminator assigns negative values (x-axis top left subgraph) to samples
produced by the generator, as they are easily distinguishable from train-
ing examples, thus yielding a low output probability (y-axis top left
subgraph).Middle: saturating discriminator loss. For negative input
values, the output is very close to or almost zero, providing very small
gradient updates for the generator. Right: non-saturating discriminator
loss. By changing the optimisation objective, the discriminator provides
a better gradient update signal to the generator for the early stages of
training.

the generator produces mostly noise, easily distinguishable from training

examples. The discriminator will confidently assign a very low probability

to generated samples and thus, due to the second term of the objective

(Ez∼pZ [log(1−D(G(z)))
]
), provide only very small, almost non-existent

gradient update signals to the generator. See Figure 2.1 for a visualisation

of the relevant functions. Therefore, in practice, training typically consists

of minimising a non-saturating loss formulation for the generator.

Non-saturating lossL
D
= − E

x∼p

[
log(D(x))

]
− E

z∼pZ

[
log(1−D(G(z)))

]
(2.3)

L
G
= − E

z∼pZ

[
log(D(G(z)))

]
(2.4)

As the generator loss function is not the exact inverse of the discriminator

lossLG 6= −LD, this is no longer a zero-sum game in the strict sense.

GANs have notoriously unstable training since the two networks, gener-

ator and discriminator, are optimised simultaneously and the generator in
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particular depends on the gradient signal from the discriminator for weight

updates. Several works propose small changes and improvements to stabil-

ise the training procedure (Salimans et al., 2016; Arjovsky & Bottou, 2017;

Heusel et al., 2017). This includes, in particular, adaptations of conven-

tional image classifiers to be used as convolutional GANs for representation

learning (DCGAN, Radford, Metz & Chintala, 2016). Further architec-

tural improvements consist of adding self-attention layers to the generator

and discriminator (SAGAN, H. Zhang et al., 2019), as well as scaling up

the developed building blocks for large-scale training (BigGAN, Brock,

Donahue& Simonyan, 2019). Progressively growing GANs (Karras et al.,

2018) propose an architecture that starts training at low resolution (4× 4

pixels), incrementally adding layers to the generator and discriminator

during training that double the spatial resolution up to 1024× 1024.

StyleGANThe StyleGAN class of models adopts the progressively growing archi-

tecture as well as techniques from style transfer, like adaptive instance nor-

malisation, for a re-designed style-based generator architecture (Karras,

Laine &Aila, 2019). Instead of generating an image directly from a latent

code sample z ∈ Z , a fully connected mapping network f(z) = w trans-

forms it to an intermediate latent space w ∈ W . This latent code is then

injected into the generator after each convolutional layer as a style vector,

conditioning the synthesis of the target image. Follow-up work by the same

authors fixes small image artefacts (Karras, Laine et al., 2020) and adds

image augmentation for training with limited data (Karras, Aittala et al.,

2020).

WASSERSTEIN GANS

The objective of Wasserstein GANs (WGANs) is to minimise theWasser-

stein distance or earth mover’s distance, between the data distribution and

implicit model distribution (Arjovsky, Chintala & Bottou, 2017; Gulrajani

et al., 2017). The authors argue that the training instabilities of the original

GAN objective arise due to the divergence measure between the two distri-

butions in other objectives potentially not being continuous with respect
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to the generator parameters. Lipschitz continuityTherefore, they propose to enforce Lipschitz

continuity on the discriminator function. Such a functionD : Rn → R is

K-Lipschitz if for a distance function d on R the distance in the projected

space is smaller than or equal toK times the distance in the original space.

K is then referred to as the Lipschitz constant.

∀x, y ∈ Rn, d
(
D(x), D(y)

)
≤ K d

(
x, y

)
(2.5)

For this, the authors relax the output space to cover the complete space of

real numbersR. Rather than adiscriminatornetwork,WGANs thusmakeuse

of a critic. While a discriminator is optimised to predict the correct target

labels for training examples and generated samples, the critic is simply

trained tomaximise the difference between its predictions for the two types

of inputs. Using the Kantorovich-Rubinstein duality (Villani et al., 2009),

the objective is changed to minimising theWasserstein-1 distance between

the data and themodel distributions, implicitly defined by the generated

samples x̃ = G(z). Here, the critic functionD is 1-Lipschitz continuous,

meaning the norm of its gradient at no point is larger than 1.

min
G
max
D

E
x∼p

[
log(D(x))]− E

z∼pZ
[log(D(G(z)))

]
(2.6)

TheWGAN formulation has the benefit of better robustness to choices in

network architecture, whereas DCGAN (Radford, Metz & Chintala, 2016),

for example, fails without batch norm layers.

There are several approaches to ensuring 1-Lipschitz continuity, which

give rise to the twoWGAN formulations: weight clipping and gradient penalty.

Weight clippingWe can simply apply weight clipping, constraining the network weights to

a fixed range after each optimisation step (Arjovsky, Chintala & Bottou,

2017). Gradient penaltyAlternatively, we can add a gradient penalty loss term to the objective

function (WGAN-GP, Gulrajani et al., 2017).

L = E
x∼p

[
log(D(x))

]
− E

z∼pZ

[
log

(
D(G(z))

)]
+ λ E

x̂∼px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

] (2.7)
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The gradient penalty formulation has two drawbacks when compared to

gradient clipping. First, this approach is computationally more expensive,

as it requires an additional backward pass to obtain the gradients for the

penalty loss term. Second, it adds another hyper-parameter (λ), which

might require tuning for best results.

SPECTRAL NORMALISATION GANS

Amore principled way of enforcing 1-Lipschitz continuity, without weight

clipping or gradient penalty, is through spectral normalisation (SNGAN,

Miyato et al., 2018). In the linear transform of a single layer g(h) = Wh for

an input h, the Lipschitz constant is equal to the largest singular value of

the weightmatrixW . Thus, normalising the weightmatrix of every layer by

its largest singular value is a simple and cost-effective approach to ensuring

Lipschitz continuity of the composite function. Moreover, the authors find

that for the calculationof the largest singular value throughpower iterations,

one single iteration yields a sufficiently accurate approximation. Spectral

Normalisation GANs implement a simpler approach to ensuring Lipschitz

continuity and have a computational benefit overWGANs with gradient

clipping as they do not require a backward pass to compute the gradient.

In contrast to the conventional GAN objective, where generator and dis-

criminator updates have to be carefully balanced, theWGAN critic should

ideally be trained until convergence at each optimisation step to provide

the highest-quality gradient signal to the generator. Since this might be too

inefficient for most cases, the authors recommend five critic updates for

every generator update, and if necessary to increase the number of critic

iterations for harder problems.

2.1.2 VARIATIONAL AUTO-ENCODERS

Themotivation for latent variablemodels, such as variational auto-encoders

(VAEs), is to find a simpler, lower-dimensional yet semantically meaning-

ful representation for the examples in a given dataset. Bymaximising the
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likelihood of the data, the latent variables ideally recover the independent

factors of variation underlying the generative process which produced the

data. The VAE objective is to maximise the log-likelihood of the data. Objective

max
θ

∑
i

log pθ(xi) =
∑
i

log
∑
z

pZ(z) pθ(xi|z) (2.8)

For a discrete random variable z with a small domain, the solution to this

objective can be calculated exactly. However, when z can take on a very large

amount of possible values, i. e. in the case of continuous random variables,

the objective becomes intractable and can only be approximated. The key

idea of VAEs is to approximate the true posterior distribution p(z|x)with

a simple, tractable distribution qφ(z|x) via an inference network. The con-

ditional probabilities pθ(x|z) and qφ(z|x) are parameterised by artificial

neural networks with parameters θ and φ, respectively. VAEs thus follow

the standard architecture of auto-encoders: an encoding recognition net-

workE : X → Z maps from feature space to latent space, and a decoding

generative networkD : Z → X maps back to the feature space.

Approximate
variational
lower-bound

Instead of the intractablemarginal likelihood, wemaximise an approxim-

ate variational lower bound (first right-hand-side term), or evidence lower

bound (ELBO), which is guaranteed to approach the maximum likelihood

from below everywhere. That is to say, we know that the likelihood of the

data under the model is at least as high as the approximate lower bound and

potentially higher, which is what we want to achieve. Simultaneously, we

minimise the Kullback-Leibler (KL) divergence between the approximate

posterior and the prior distributions (second term). Since the KL diver-

gence is always bigger than or equal to zero, it accounts for the difference

between the variational lower bound and the log-likelihood.

log p(x) = E
z∼qx(z)

[
− log qx(z) + log p(z) + log p(x|z)

]
+DKL

(
qx(z) ‖ p(z|x)

) (2.9)

There are several approximation approaches. We focus here on the most

popular, the reparameterisation trick (Kingma&Welling, 2014). Reparameter-
isation trick

Each training
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example is passed through the encoding network which yields the paramet-

ers of the Gaussian (means µ and variances σ2) that define the approximate

latent distribution.We then sample from a normally-distributed auxiliary

noise variable ε ∼ N (0, I), where I is the identity matrix indicating no cor-

relation between the independent variables in the multi-dimensional case,

and add it to the parameters of the latent distribution to obtain a perturbed

encoding z = µ+ ε · σ2, which is independent of the network parameters θ

and φ. This step is repeatedL times to obtain a better approximation. How-

ever, in practice, one sample is often sufficient since the stochastic gradient

descent setup already involves repeated sampling over many training ex-

amples and iterations. For reconstruction, the samples zi are passed through

the decoding generator to reconstruct the input and evaluate the ELBO.

While we have looked at VAEs as a latent variable generative model, the

connection to auto-encoders becomes evident in the following equation.

log pθ(x) ≥ E
z∼qx(z)

[
log pθ(x|z)

]
−DKL

(
qφ(z|x) ‖ p(z)

)
(2.10)

The first right-hand-side term is effectively a reconstruction loss that quan-

tifies the likelihood of x given z. That is to say, how well does the generator

with the current parameters θ generate an artefact from the latent encoding?

The second term, the KL divergence between the latent distribution and a

standard normal distribution, serves as a regularisation loss term forcing

the latent distribution to move closer to a simple pre-defined distribution,

like a Gaussian. In order to not simply memorise the data, we should not

allow the latent distribution to take any complex form. Regularisation is

one way to achieve this. The VAE loss function reflects the same loss terms

(for simplicity, for a single training example x).

L(x) =
1

L

L∑
i=1

log p(x|zi) +
1

2

M∑
j=1

(
1 + logσ2

j − µ2
j + σ2

j

)
z = µj + ε · σ2

j ε ∼ N (0, I)

µj = µj(x, φ) σj = σj(x, φ)

(2.11)
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There exist Loss functionsseveral functions to evaluate the reconstruction loss. Following

the practice of auto-encoders, a common choice is a mean-squared error.

Better results are typically achieved using binary cross entropy. But both

choicesmake themodel non-probabilistic. Theoretically better suited is the

continuous Bernoulli distribution (Loaiza-Ganem&Cunningham, 2019).

As in the above explanation, the prior of the latent distribution is typically

a Gaussian, the highest-entropy distribution for continuous variables with

known variance. Alternatively, the distribution of the latent variables can

be specifically designed for a dataset with known factors of variation. For

example, in the case of theMNISTdataset (LeCun, Cortes&Burges, 2010),

we know that we deal with images of ten hand-written digits.We could thus

specify ten dimensions of the latent space with a Bernoulli prior that are re-

served to assign data examples to digit classes via a one-hot encoding, while

all other dimensions have a Gaussian prior and remain available to capture

other continuous factors of variation, e. g. stroke thickness or rotation.

LATENT DISENTANGLEMENT: β-VAE

Standard VAEs are not guaranteed to capture linearly separable factors of

variation from the data in individual latent variables. Beta-VAEs (Higgins

et al., 2016) aim to improve latent disentanglement by adding the hyper-

parameter β to the objective. Bigger values for β put more emphasis on the

encoding distributionmapping to a standard normal distribution, whose

variables are independent and identically distributed.When β = 1, Beta-

VAE is identical to the original VAE.

L = E
qφ(z|x)

[
log pθ(x|z)

]
− β DKL

(
qφ(z|x) ‖ p(z)

)
where p(z) = N (0, I) β ≥ 1

(2.12)

The closer the latent distribution is to aGaussian, the less dependence there

is between individual dimensions.

Further work on understanding disentanglement extends the Beta-VAE

objective by a capacity control hyperparameter γ (Burgess et al., 2017). This



BACKGROUND 39

objective minimises the absolute deviation of the KL divergence from the

capacity control γ.

L = E
qφ(z|x)

[
log pθ(x|z)

]
− β |DKL

(
qφ(z|x) ‖ p(z)

)
− γ |

where p(z) = N (0, I) β ≥ 1 γ ≥ 1

(2.13)

Following the informationbottleneckprinciple, the capacity control ismeas-

ured in natural units of information (nat), which quantifies the information

content of observations (here: examples from the training dataset). An ob-

servation with the probability 1/e has the information content of one nat.

The authors recommend increasing the hyperparameter γ during train-

ing to gradually give more capacity of the encoding to additional factors

of variation while maintaining the disentanglement of previously learned

factors.

2.2 GENERATIVE MODELS AS CREATIVE SYSTEMS

In her book on human and computer creativity, Boden (2004) describes

three forms of creativity: combinational, exploratory and transformational cre-

ativity. Here, we will focus on the latter two. The creative system framework

(Wiggins, 2006a; 2006b) The creative system
framework

builds onBoden’swork and formalises the ideas of

exploratory and transformational creativity, describing the computational

components necessary to implement a creative system.

Within the framework, a conceptual space is defined as a set of artefacts that

a system could conceivably produce.

Thenotionof a conceptual space is easily applied togenerativemodels. In the

context of generativemodelling, amodel’s latent space can be understood as

a conceptual space. The latent variables are used as an abstract representation

of artefacts in a dataset. Through the training process, they are placed in

semantically meaningful relations with each other. The properties of the

latent space, themodel’s conceptual space, are thus defined by the examples

in a training dataset. In particular, one can easily imagine that there is a

dataset of artefacts which does not contain all possible examples of a type of
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artefact. For example, a dataset of chairs may not include any chairs without

a backrest. Amodel trained on this dataset will provide a conceptual space

that does not cover all possible instances of the artefact, e. g. chairs without

a backrest. Amodel can be transformed to extend the conceptual space it

provides: to follow our example, by augmenting the training dataset with

examples of stools.

In exploratory creativity, Exploratory and
transformational
creativity

new artefacts are identified and/or located by tra-

versing the conceptual space with a search strategy. That is to say, artefacts

are found through exploration rather than created through deliberate con-

struction. Consequently, the properties of a conceptual space determine

which artefacts can be conceived or not.Transformational creativity takes one

step further to a meta-level of creativity. By changing the properties of a

conceptual space, the conditions that enable the identification and/or local-

isation of artefacts through exploration can be transformed. The variety of

different conceptual spaces can be seen as artefacts in a conceptual space

of conceptual spaces which itself can be explored. In the framework, trans-

formational creativity is thus understood as exploratory creativity at the

meta-level.

2.3 USE OF GENERATIVE MODELS WITH EVOLUTIONARY

ALGORITHMS

Previous work employed auto-encoders for dimensionality reduction and

its latent representations as encodings of behavioural descriptors in control

tasks (Meyerson, Lehman &Miikkulainen, 2016; Cully, 2019). In shape

optimisation, the latent spaces of generative models have been used to

distinguish parameterised representations (Hagg, Preuss et al., 2020; ‘A

Deep Dive Into Exploring the Preference Hypervolume’, n.d.). In robotics,

this approach allows robots to autonomously discover the range of their

capabilities without prior knowledge (Cully, 2019).Generativemodels have

also been employed to automatically learn an encoding during optimisation,

using them as a variational operator (Gaier, Asteroth &Mouret, 2020).
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GANs have been used in latent variable evolution (Bontrager et al., 2018)

to generate levels for the video games SuperMario Bros (Volz et al., 2018)

andDoom (Giacomello, Lanzi & Loiacono, 2019). These approaches are

illustrative of exploratory creativity (Section 2.2). A model’s latent space is

searched with an evolutionary algorithm for instances that optimise for

desired properties such as the layout or difficulty of a level. While some

authors view the generated levels as novel, none havemeasured exactly how

novel or diverse of an output such a system can produce.

To the best of our knowledge, before our principled study (Chapter 4),

there existed no evidence of the benefits and drawbacks of using generative

models for phenotypic encoding in evolutionary algorithms.

2.4 EVALUATION OF GENERATIVE MODELS

This section provides an overview of the conventional approach to evaluat-

ing the performance of generative models.We focus here on the evaluation

of image-generatingmodels. Different specialised measures may be better

suited to assess models that produce other types of artefacts, e. g. audio or

text.

We first discuss the use of image embeddings to facilitate the semantic

rather than pixel-wise comparison of images. We then guide the reader

through the evolution of performance measures specific to generative mod-

els, discussing individual limitations and how they were addressed by sub-

sequentwork.Crucially, at the beginning of theworkpresented in this thesis

(late 2019), the evaluation of generative algorithms in machine learning

was primarily concerned with the fidelity and mode coverage of the gen-

erated artefacts. There was little to no consideration for the diversity of

examples in a dataset or collection of generated output. And none of the

measures discussed in this section are suited to objectively assess this. Only

more recently, some progress has beenmade with the proposal of the Vendi

Score (VS), a dataset-independent measure of diversity (Section 2.5).
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2.4.1 IMAGE EMBEDDINGS

Instead of comparing image data on raw pixels, standard evaluationmeas-

ures of model performance have relied on image classification networks

to be used as embedding models for feature extraction. The Inception

model (Szegedy et al., 2016) is most commonly used as a representative fea-

ture space and has been widely adopted as part of a standardmeasurement

pipeline, most prominently lending its name to the IS and FIDmeasures

(see below for details). There are alternative models, like the VGGmodels

(Simonyan & Zisserman, 2015). The majority of older computer vision

models, like Inception and VGG, have been pre-trained on the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) dataset (Russakovsky

et al., 2015) and are thus limited in three important aspects. First, the Im-

ageNet dataset consists of natural images from 1,000 very specific classes,

e. g. zebra, umbrella and forklift. These classes were selected to pose a chal-

lenging classification problem in computer vision research. For this reason,

the ImageNet classes also include several very similar breeds of dogs. Second,

as a result, the models are optimised to capture features relevant to only

this limited set of classes. Third, they inherit the dataset’s biases, which can

lead to unreliable measurements of image qualities that do not agree with

human assessment (Kynkäänniemi et al., 2023). Furthermore, between

different computational frameworks like PyTorch, TensorFlow and JAX,

small numerical differences in model weights, implementations and inter-

polation operations can compound into bigger discrepancies. For example,

image scaling tomatch the input size of an embeddingmodel can change the

computed features and thus affect the subsequent measurements (Parmar,

Zhang& Zhu, 2022). Measures like FID further assume that a model’s em-

bedding space is approximatelyGaussian, which is not always guaranteed. It

is therefore preferable to (1) follow the recommendations for anti-aliasing

re-scaling and (2) to use a newer image embeddingmodel, like CLIP (Rad-

ford et al., 2021), in a feature extraction andmeasurement pipeline.
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2.4.2 PERFORMANCE MEASURES

The Inception Score (IS) Inception Scoreinherits its namedirectly from the aforementioned

Inception model and is based on the class prediction probabilities of its

output layer (Salimans et al., 2016). The IS follows the principle that a good

generative algorithm produces artefacts that are individually classified by

a computer visionmodel with high confidence in a single class, while also

producing a large variety of different artefacts. The former is quantified

by the entropy over the conditional label distribution p(y|x), where lower

entropy is better. The latter is defined as the entropy of themarginal p(y) =∫
z p(y|x = G(z)) dz over a sufficiently large set of samples generated by

a generator G from a latent code z, where higher entropy is better. The

difference between these two distributions is given by the Kullback-Leibler

divergenceDKL (Equation 2.1).

IS(Q) = exp
(

E
x,y∼Q

[
DKL

(
p(y|x) ‖ p(y)

)])
(2.14)

Since the class label distribution and themarginal distribution ideally di-

verge, a higher score indicates better performance in this regard.While the

score’s lowest value is 1, there is no theoretical upper limit. This lack of a pre-

cise range and the fact that the exponential function breaks linearity make

the IS difficult to interpret and unsuitable for direct comparison. Amodel

that achieves a score twice as high as another model is not necessarily twice

as good. It can only be speculated whether the authors wanted to explicitly

reward small improvements at high values (by analogy, it is notoriously

difficult to raise the accuracy of a classifier from 97 to 98 % compared to

the increase from 77 to 78 %) since there is no explicit explanation in the

original proposal.

Apart from the general drawbacks of using the Inception model which is

discussed in the previous section, there are some other specific limitations

to this measure. The IS does not measure intra-class diversity. All gener-

ated images in one class could look identical or have only slight variations

and would still achieve a high score if the evaluatingmodel assigns them a
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class with high confidence. Going further, if a model simply memorises and

reproduces the training data it similarly would score highly. Several other

approaches, discussed below, try to improve on the Inception Score.

Mode ScoreTheMode Score (MS) addresses the problem of missingmodes (Che et

al., 2017), i. e. types of images of high probability in the training dataset that

are not well represented in the model distribution. The authors propose an

extension to the ISby replacing themarginal label distributionwith the label

distribution over the training data (p(y∗)), and by introducing an additional

term that computes divergence from p(y∗) to the label distribution over

generated samples p(y). The closer both distributions are, the higher the

score.

MS(Q) = exp
(

E
x,y∼Q

[
DKL

(
p(y|x) ‖ p(y∗)

)]
−DKL

(
p(y) ‖ p(y∗)

))
(2.15)

Conceptually, this score links the evaluation of a model closer to the classes

of the training data, which is a direct response to the problem of missing

modes.

Fréchet Inception
Distance

The Fréchet Inception Distance (FID) makes use of the Fréchet distance

between two distributions, also known asWasserstein-2 distance, to turn

the IS from an unbounded score into a distance measure (Heusel et al.,

2017). Features are extracted with an embedding model for the images

from the training dataset and images generated by the model. Assuming

the embedding space follows a Gaussian distribution, the distributions

of the embeddings of training images P and the generated imagesQ are

approximated by computing theirmeans x̄ and covariancematricesS.With

these statistics, the FIDmeasures the distance between the twomulti-variate

Gaussians.

FID(P,Q) = ‖x̄P − x̄Q‖+ tr
(
SP + SQ − 2(SP SQ)

1/2
)

(2.16)

In comparison to the IS, the range of the score is turned around and a lower

FID is considered better, indicating that the two Gaussian distributions

are close to each other. Consequently, there is a precise lower bound and
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optimal score, whereas the IS could in theory increase infinitely. This makes

the FID a more easily interpretable distance measure. While it is capable

of assessing intra-class diversity, this measure is still susceptible to being

fooled by a model with perfect memory of the training data. Furthermore,

the two aspects that the measure aims to assess, sample fidelity andmode

coverage, are entangled in a single score.

Precision and RecallThe pair of measures Precision–Recall (PR) adapts two conventional

evaluation concepts, precision and recall, to generative modelling (Sajjadi

et al., 2018). Precision is the fraction of generated samples that are of high

fidelity, i. e. having a sufficient resemblance to training examples. Recall is

the fraction of training examples that can be generated by the model, i. e.

they are covered by themodelled distribution. In an improved formalisation

(Kynkäänniemi et al., 2019), this is determined with a binary membership

function f , which indicates whether a sample x is supported by a given data

manifoldU by checking if it falls into the k-nearest neighbourhood (NNk)

of any data point u.

f(x,U) =


1, if ∃u ∈ U s.t. ‖x− u‖2 ≤ ‖u−NNk(u,U)‖2

0, otherwise

(2.17)

Precision(P,Q) =
1

|Q|
∑
q∈Q

f(q, P )

Recall(P,Q) =
1

|P |
∑
p∈P

f(p,Q)

(2.18)

IS and FID use a one-dimensional measure to estimate a two-factorial evalu-

ation between sample fidelity andmode coverage, which obfuscates their

interaction. For example, a low FID (good performance) may be caused by

high precision (samples of high fidelity), high recall (good mode cover-

age), or a combination of the two. In contrast, FID consists of two separate

quantities that disentangle this relation and allow for a specific choice in
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the trade-off between sample fidelity and mode coverage. This allows us

to experimentally confirm that GANs produce ‘sharper’ images of higher

fidelity but but can suffer from mode collapse (high precision, lower re-

call), whileVAEs generate ‘blurry’ images but provide better mode coverage

(lower precision, high recall). We discuss this trade-off between artefact

fidelity and diversity in more detail in Chapter 5.

2.5 MEASURING OUTPUT DIVERSITY

Several measures have been proposed to evaluate diversity in different re-

search fields with context-specific properties. In this section, we discuss the

most widely used.

In quality diversity (QD), local neighbourhoods in the search space, so-

called niches, can be used for performance evaluation. Quality
Diversity-Score

TheQD-score (Pugh,

Soros&Stanley, 2016) isdefinedas the sumoffitnessof thehighest-performing

artefact in each niche. It combines the measure of individual fitness with

the coverage of the search space: it is lower if some niches are completely

unoccupied (adding zero fitness to the sum) or only occupied with low-

quality individuals. A well-performing algorithm should be able to fill a

large number of niches with high-quality candidates.

Inmulti-modal optimisation (MMO),measures use quality indicators (Zitz-

ler, Knowles&Thiele, 2008) tomap a set of artefacts to a real number. Some

indicators rely on problem knowledge and are primarily used for bench-

marking, i. e. in test scenarios with complete information on global or local

optima and their attraction basins (Preuss &Wessing, 2013). Suchmeas-

ures are thus not applicable to most real-world problems where the fitness

landscape is not fully known.We focus here on indicators that are problem-

agnostic and can be used in real-world applications where specific problem

knowledge is not available a priori.

The sum of distances (SD) Sum of distancesrewards the spread of artefacts but does not

penaliseduplicates. In an illustrative experiment, theoptimaldistributionof

100 points in a two-dimensional Euclidean space for the SDmeasure places
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all points in the four corners of the space, resulting inmultiple duplicates

of four maximally distant solutions (Ulrich, Bader &Thiele, 2010). Since

SD does not explicitly take into account artefact diversity or quality, it

is therefore considered an inappropriate measure for diversity (Solow &

Polasky, 1994;Meinl, Ostermann&Berthold, 2011).

The sum of distance to nearest neighbours (SDNN) Sum of distance to
nearest neighbours

penalises clusters of solu-

tions and can be fooled by artefact sets with multiple duplicates of only two

maximally distant solutions (Ulrich, Bader &Thiele, 2010).

The average objective value (AOV) Average objective
value

is defined as themean of fitness over a set

of solutions.While it is comparable to the QD-score, it lacks an indication

of the spread of solutions, because it ignores niche memberships.

The field of ecology is concerned with measuring the diversity of species

in a given habitat. Ecological measures of diversity primarily rely on the rel-

ative abundances of species, i. e. the normalised counts of animals belonging

to the species of interest. For this, the fauna of a specific geographic area is

surveyed and individual animals are assigned to classes of species following

a biological taxonomy.Many ecological measures calculate diversity solely

from these relative abundances (Simpson, 1949).

Solow and Polasky (1994), however, make a case for the importance of

species similarity (or distance interpreted as dissimilarity) whenmeasuring

diversity and, together withWeitzman (1992), lay out three properties as

requirements for a diversitymeasure D of a collection of artefactsA (Ulrich,

Bader &Thiele, 2010):

1. Monotonicity in varieties Requirements for an
ecological diversity
measureAdding a new artefact b to a collection increases the diversity.

D(A ∪ b) > D(A) if min
a∈A

d(a, b) > 0

2. Twinning

Adding a duplicate artefact c to a collection does not change the di-
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versity, if it is identical to an existing artefact ai with the same similar-

ity relation to all other artefacts aj .

D(A ∪ c) = D(A) if d(ai, c) = 0 ∃ ai ∈ A

s.t. d(aj , ai) = d(aj , c) ∀ aj ∈ A

3. Monotonicity in distances

The diversity should not decrease if all pairs of artefacts are at least as

dissimilar as before.

D(A′) ≥ D(A) iff d(a′i, a
′
j) ≥ d(ai, aj)

∀ ai, aj ∈ A, ∀ a′i, a′j ∈ A′

Solow-Polaski
diversity

The corresponding Solow-Polaski diversity (SPD) measure defines the di-

versity of a given set of species as the joint dissimilarity of the species in the

set (Weitzman, 1992; Solow& Polasky, 1994). This definition differs signi-

ficantly from standard definitions of diversity in ecology, as it does not take

into account the relative abundances of species but only their dissimilarities,

meeting all three requirements above.Themeasure is computedonpairwise

distances and requires a computationally expensive matrix inversion. SPD

has been applied tomulti-objective optimisation (Ulrich, Bader &Thiele,

2010) and the evaluation of high-dimensional phenotypes (Hagg, Preuss

et al., 2020).

Pure DiversityPure Diversity (PD), an alternative formulation of SPD, is also solely

based on pairwise distances but is implemented as a recursive subset search,

eliminating the need for matrix inversion (H. Wang, Jin & Yao, 2017).

For large artefact sets it can still be expensive to compute. The PD of a

set of artefactsA is calculated recursively by finding the artefact with the

maximum distance to the subset of all other artefacts. The PD score is thus

the sum of linked dissimilarities between artefacts.

PD(A) = max
a∈A

(
PD(A \ {a}) + d(a,A \ {a})

)
(2.19)
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The distance between a set of artefacts X and an individual artefact y is

obtainedbyfinding themost similar artefact in the setx ∈ X andcalculating

the dissimilarity between x and y.

d(y,X) = min
x∈X
dissimilarity(x, y) (2.20)

We typically formalise dissimilarity as the distance between vector repres-

entations of artefacts. TheLp-normwith p < 1 has been recommended for

high-dimensional cases (H.Wang, Jin &Yao, 2017).

The PDmeasure is motivated by the following observations. A singleton,

i. e. a set that contains exactly one item, has no diversity PD(a) = 0. Adding

an item to a set increases the set diversity by thedissimilarity between the set

and the new item PD(A∪ b) = PD(A) + d(b, A).We can thus estimate the

diversity of a full set by starting from a single item, gradually adding items

and summing their dissimilarities. However, unless we specify which item

to add next there are too many options. Instead, we add the most dissimilar

item (note the maximisation term in Equation 2.19). The PD of a set is thus

the maximum joint dissimilarity between its items.

In the context of statistical machine learning, however, considerations of

the required properties of a diversity measure differ from those in ecology.

In particular, the twinning property has to be re-evaluated, since duplicate

training examples correspond to an imbalance in a dataset, which can be a

cause for bias in a trainedmodel. It is to be expected that such duplicates are

assigned a higher probability mass under a statistical model while reducing

the overall likelihood of singular examples. Adding a duplicate to a training

dataset thus decreases the diversity of the artefacts sampled from amodel

trained on that dataset. Consequently, relative abundance and similarity

are both relevant factors in the evaluation of diversity in machine learning.

Diversity of order qThe authors of Diversity of order q (D q), a family of measures of biolo-

gical diversity, advocate for the importance of the similarity of species as

a criterion that complements information on the relative abundances of

species (Leinster&Cobbold, 2012). Themeasure’s sensitivity to the abund-

ance of rare species can be adjusted through the parameter q ∈ [0,∞]. For
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q = 0, rare species have the same weight as common ones. For q = ∞,

only themost abundant species affect the score, rare ones are ignored. As

a family of measures, D q subsumes many popular measures of diversity

in ecology. While it is customary to gather relative abundance data of a

community of species, this information can be difficult to obtain in com-

plex domains such as images. Animals are assigned to discrete categories

following a biological taxonomy, giving a discrete distribution over species.

The same cannot be done for images without some difficulties and taking

into account important considerations. Though common in ecology, any

division into categories is somewhat arbitrary and only sometimes useful.

A typology can bemore appropriate, allowing for the classification along

multiple criteria (e. g. images of scenes in different locations at different

times might be classified along two binary criteria, resulting in four classes:

daytime-inside, daytime-outside, nighttime-inside, nighttime-outside). Dividing

training examples into categories can be particularly problematic if the

training data involves people (e. g. images of human faces). Dividing aspects

that are expressed as continuous variables (e. g. age) can result in crude and

limiting classifications when turned into nominal values (e. g. young and

old). And inferring certain qualities or characteristics about people from

their appearance alone is simply wrong. In any case, we need to remember

that any classification is potentially meaningless if we train a generative

model unconditionally, that is to say, ignoring the class separations of the

training data. Even if it was feasible and useful to assign images to separate

categories, we would be facing the same question as ecologists: What is

the similarity between the different categories? In ecology, this question

demands a conscious decision to measure diversity in terms of a specific

aspect of the species. For example, if we are interested in genetic diversity,

we require the genetic similarity between the categories of species. Similarly,

a diversity measure can be tuned to a different aspect of diversity when we

use the functional or morphological similarity between species. To do the

same for images, we need to decidewhich aspects are important for diversity

and how to determine the similarity between categories in these aspects.
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The Vendi Score (VS) Vendi Scoreis specifically designed to measure diversity in a

machine learning context (Friedman&Dieng, 2023) and through its un-

supervised approach has important advantages over the measures presen-

ted above. The relative abundances of artefacts are implicitly considered

through a similarity function that reflects the correlations across artefacts.

Thus, instead of relying on a clear separation of artefacts via distinct classes,

as is customary for measures of biodiversity, the VS infers abundances from

similarities. If there are many artefacts in a dataset which are very similar

to each other, their pairwise distances will be very low and they will im-

plicitly form a group of artefacts with the same likeness. The selection of

the similarity function is thus an important domain-dependent choice.

Yet, the measure is still problem-agnostic, as it does not require any a

priori problem knowledge. Specifically, the diversity of a collection ofN

artefacts x1, . . . , xN is calculated purely from the pairwise similarity mat-

rix K ∈ RN×N of artefacts, which is obtained via a similarity function

k(xi, xj) = Kij . The VS is defined as the exponential of the Shannon en-

tropy of the eigenvaluesΛ of the normalised similarity matrixK/N .

VS(K) = exp
(
−

N∑
i=1

λi logλi

)
(2.21)

Here K is a positive semi-definite similarity matrix (N × N) between

pairs of artefacts such that k(x, x) = Kii = 1 for all x. The eigenvalues

λ1, λ2, . . . , λN of the normalised similarity matrix can be obtained via the

eigendecomposition K/N = QΛQ−1 as the diagonal elements of the di-

agonal matrix λi = Λii. VS computes the effective rank of the similarity

matrixK, the exponential of the entropy of its normalised singular values.

In the probability-weighted formulation of the VS Probability-
weighted
Vendi Score

(Friedman&Dieng,

2023), relative abundances can be explicitly quantified via a probability vec-

tor p = (p1, . . . , pN ). The definition is the same as before (Equation 2.21),

but the similarity matrix is instead normalised by the probability weights

Kp = diag(√p)Kdiag(√p).

Family of
Vendi Scores
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Similar toD q adopting theHill numbers (Hill, 1973), the family of Vendi

Scores extends the VSmeasure to a collection of diversity measures with

a parameter q that controls its sensitivity to under-represented artefacts

(Pasarkar &Dieng, 2024). As in D q, the higher the parameter q, the less

sensitive the measure is to rare examples. The authors thus recommend

measuring diversity with a VS of small order q ∈ [0.1, 0.5]. The basic formu-

lation of the VS is equal to the special case q = 1 (Equation 2.21).

VSq(K) = exp
( 1

1− q
log

N∑
i=1

(λi)
q
)

(2.22)

As before, the similarity matrixK is either normalised by the number of

artefacts N or the probability weights p. To calculate the score we then

compute the eigenvaluesλ of the normalised similarity matrix.We adopt

the probability-weighted VS to calculate the diversity weights for our method

to increase the output of a generative model (Chapter 5).

Both theVS andD q claim Measure
inconsistencies

to give as output an effective number (Hill, 1973),

representing the count of absolutely dissimilar itemsof equal abundance in a

dataset.However, given the samedata, themeasuresdonot agree, producing

different scores and thus different ‘effective numbers’. Which of the two

measures does in fact give an effective estimate? And, if the twomeasures are

related, what is the transformation of one score to the other that explains

their disagreement? Resolving this inconsistency and identifying potential

relationships betweenmeasures is subject to future work.

2.6 HUMAN PERCEPTION OF SIMILARITY

Studies on the human perception of similarity are at the core of psychophys-

ics. They cover a large variety of stimuli, frommore basic stimuli such as

sound or colour to complex ones such as motion or 3Dmodels. However,

to the best of our knowledge, in the domain of video games, there exist no

empirical studies on human similarity judgement and its comparison to

surrogate metrics. A taxonomy of game evaluationmetrics put forward by



BACKGROUND 53

Volz (Volz, 2019, Appendix A) suggests that very few of such metrics in

games drawon insights into humanperception, and of those few, nonemeas-

ure similarity. Previous related work on the alignment of computational

metrics with human perception (Mariño, Reis & Lelis, 2015; Summerville

et al., 2017) focuses on human perception of fun, difficulty, and aesthetics

within individual levels. Arguably the closest predecessor to the present

study, Mariño, Reis and Lelis (2015) investigate whether a series of com-

putational metrics used in PCG adequately capture player’s perceptions of

levels of SuperMario Bros. Amongst unrelatedmetrics, they calculate Com-

pression Distance as a metric of structural dissimilarity between pairs of

levels. Crucially though, they donot correlate it with the player’s perception,

likely because the experimenters did not find significant differences in com-

pression distance between the generated levels examined in the user study.

In contrast, our present work focuses specifically on comparing similarity

metrics to people’s perception of similarity of game levels.

Havingcovered the technical backgroundofgenerativemodellingapproaches

in deep learning, in the next chapter, we discuss how such techniques have

been put to use in the context of artistic and creative practices to generate

artefacts of high cultural value.



Chapter 3

ART IST IC AND CREATIVE USES OF

GENERATIVE MODELS

In this chapter, we introduce the term active divergence to describe a common

theme in the artistic uses of generative deep learning (DL) (Berns &Colton,

2020), thereby addressing RQ 1. Artists often consciously break, tweak or

otherwise intervene in data-driven generative processes in order to produce

artefacts, that are culturally valuable, but sub-optimal fromapuremodelling

perspective.Wepresent an introductory overview of some active divergence

techniques, many of which require human supervision of important tasks

and decisions.

We further present a framework for automating generative deep learn-

ing (DL) with a specific focus on artistic applications (Berns et al., 2021).

The framework adopts core concepts from automated machine learning

(AutoML) and is informed by the theory and practice of computational cre-

ativity (CC). Tomotivate the framework, we argue that automation tech-

niques are a pathway to increasing the creative responsibility of a generative

system, a central theme in CC research. The interaction between the engin-

eer and the generative system can be framed as a co-creative act.We describe

the standard pipeline for the development and deployment of generative

DLmodels and highlight how artistic practices differ from this standard.

Both pipelines, in the standard and artistic settings, includemany tasks and

decisions that normally would be performed or taken by a person. In our

framework, we formalise such decisions as targets for automation: opportunit-

ies for addressing manual tasks with computational means. The framework,

through its targets, makes a central contribution to integrating the concept

of active divergence into CC research.
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3.1 INTRODUCTION

In recent years, methods in generative machine learning have seen steady

improvements in their training stability, scale and output fidelity. Over

the course of only a few years, research contributions have pushed mod-

els from generating crude low-resolution images to highly photo-realistic

output. Cultural value, however, does not necessarily correlate to high arte-

fact fidelity, i. e. photorealistic images. While imperfect from a pure ma-

chine learning perspective, earliermodelling approaches,GANs in particular,

lend themselves to co-creative work in the visual arts. Rather than produce

photorealistic imagery, they evoke visual indeterminacy, i. e. produce im-

ages which “appear to depict real scenes, but, on closer examination, defy

coherent spatial interpretation” (Hertzmann, 2019). An online community

that formed under the hashtag ‘creative AI’ (Cook & Colton, 2018) has

been particularly eager to embrace this aesthetic and successful in exploring

unconventional applications of generative models. Visual artists likeMario

Klingemann, Sofia Crespo and Bas Uterwijk have established successful

artistic practices around this approach. In major academic conferences with

a focus on artificial neural networks, creative and artistic perspectives have

found a place in workshops and art exhibitions. But while generative ma-

chine learning researchers focus their work on the very specific objective of

distribution fitting, creative practitioners are happy to adopt luckymistakes

and embrace generative imperfection. In this chapter, we analyse some of

the techniques used to create culturally valuable artefacts with generative

models and define the general approach as follows:

Active divergence using generative machine learning methods

to intentionallymodel a new distribution that does not directly

approximate a data distribution to generate novel artefacts.

Wemake the case for generative modelling approaches, in particular GANs,

as a successful and useful technology for image generation. However, in

their conventional formulation, they are inherently limited in their creative

abilities by the objective of perfectly matching a given data distribution.
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In the following section, we discuss how, despite its limitations, GANs have

been used as artwork production engines and seen heavy customisation for

this purpose.We then explore how CC research can contribute to further

evolving such models into more autonomous creative systems, looking

specifically at measures of novelty as a first step towards this goal.

3.1.1 LEARNING FOR PERFECTION

While the purpose of GANs, like all generative models, is to accurately cap-

ture the patterns in a dataset andmodel its underlying distribution, guar-

anteeing convergence for this particular method remains a challenge (Lucic

et al., 2018). Theoretical analyses of theGAN training objective suggest that

the models fall significantly short of learning the target distribution and

may not have good generalisation properties (Arora et al., 2017). It has

further been suggested that GANs in particular might be better suited for

other purposes than distribution learning. Given their high-quality output

and wide artistic acceptance, we argue for the adaptation of this generative

approach for CC purposes.

Generative models are currently only good at producing ‘more of the

same’: their objective is to approximate the distribution of a given training

dataset as closely as possible. This highlights two sides of the same fun-

damental issue. First, in practice, it remains unclear whether models with

millions of parameters simply memorise and re-produce training examples.

Performancemonitoring through a hold-out test set is rarely applied and

overfitting in generative models is not widely studied. Second, and most

importantly in this context, conceptually, suchmodels are only of limited

interest for creative applications if they produce artefacts that are insignific-

antly different from the examples used in training. Hence we further argue

for an adaptation such that generative capabilities align with the objectives

of CC: to take on creative responsibilities, to formulate their own intentions,

and to assess their output independently (Colton&Wiggins, 2012).
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3.1.2 ACTIVELY DIVERGING FROM PERFECTION

In order to produce artefacts in a creative setting, GANs still require expert

knowledge andmajor interventions. Artists use a variety of techniques to

explore, break and tweak, or otherwise intervene in the generative process.

In the following, we present three case studies as illustrative examples of

acive divergence techniques. Amore comprehensive survey of the state of the

art at the time of publication can be found in Broad et al. (2021). From a

pure machine learning perspective, these exploits and accidents only pro-

duce sub-optimal results, since their objective is different from perfectly

modelling the training data distribution. Actively diverging from local like-

lihoodmaxima in a generator’s internal representation is necessary to find

those regions that hold sub-optimal, but culturally valuable artefacts that

would otherwise rarely be sampled.

Cross-domain training blends two (or more) training sets of the same

modality, such that a model is first fit to the images from one type (e. g.

human faces) and then fine-tuned to another (e. g. beetles). The resulting

output combines features of both into cross-over images (Figure 3.1). Find-

ing the right moment to stop fine-tuning is crucial and human supervision

in this process is indispensable.

Loss hacking intervenes at the training stage of a model where the gen-

erator’s loss function is manipulated in a way that diverts it towards sub-

optimal (with respect to the traditional GAN training objective) but inter-

esting results. Given a model that generates human faces, for example, the

loss function can be negated in a fine-tuning process such that it produces

faces that the discriminator believes are fake (Figure 3.2; Broad, Leymarie

&Grierson, 2020). Again, human supervision and curation of the results

are just as important as devising the initial loss manipulation.
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Figure 3.1: Example for cross-domain training : StyleGAN trained on the FFHQdata-
set (Karras, Laine &Aila, 2019), fine-tuned on a custom beetle dataset.
Reproduced with permission fromM.Mariansky.1

Early stopping and rollbacks are necessary whenever a model becomes too

good at the task it is being optimised for. Akin to the pruning of decision

trees as a regularisation method or focusing on sub-optimal (in terms of

fitness functions) artefacts produced by evolutionary methods, rollbacks

can improve generalisation, resulting in artefacts that are unexpected rather

than perfect. As an example, Pinar Yanardag described the process of train-

ing aGAN to generate a ‘little blackdress’ onTwitter2: “The algorithmworks

so well that ... we actually had to go to earlier iterations to find ‘creative’

designs (when themodel was still ‘learning’ andmakingmistakes like weird

color patches).”

All of the above techniques require manual interventions that rely on

human action and personal judgement. There are no well-defined general

criteria for howmuch to intervene and at which point or when to stop. It

is central to an artistic practice to develop such standards, nurture their

individuality and highlight the difference from other practices. A major

theme in GAN art, however, and a commonality in the above non-standard

uses, is the active divergence from the original objective of the tool of the

trade, in pursuit of novel and possibly surprising artefacts of high cultural

1 Tweet by@mmariansky. https://twitter.com/mmariansky/status/1226756838613491713
2 Tweet by@PINguAR. https://twitter.com/pinguar/status/1109821860273967104

https://twitter.com/mmariansky/status/1226756838613491713
https://twitter.com/pinguar/status/1109821860273967104
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Figure 3.2: Samples from Broad, Leymarie and Grierson (2020) of StyleGAN
fine-tuned with a negated loss function. In its state of ‘peak uncanny’
the model started to diverge but has not yet collapsed into a single
unrecognisable output.

value. This dynamic appears to be, in contrast to other artistic disciplines,

exceptionally pronounced due to the use of state-of-the-art technology that

has yet to find its definite place and purpose andwhose capabilities are open

to be explored.We celebrate and support this endeavour and argue that CC

can help by pushing generative models further, towards new objectives.

3.1.3 NEW OBJECTIVES FOR GENERATIVE MODELS

In a creative setting, two avenues of future applications for generative mod-

els come to mind: (1) creativity support tools and (2) autonomous creative

systems, which we briefly discuss in the following, together with necessary

improvements.

First, let us consider creativity support tools (Shneiderman, 2002),where

a person is in charge of achieving an independently formulated creative goal

and, to this end, draws on assistance from tools and technologies, such as

generativeDL. For generativemodels to be useful in this context and to facil-

itate the creative process rather than obstructing it, twomain requirements

need to be addressed. On the one hand, generative DL needs to be more

accessible. The deployment of generative models in general, and the active
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Figure 3.3: Series of image edits applied to three different GANswith themethod
fromHärkönen et al. (2020)

divergence techniques presented here in particular, require highly technical

knowledge and specialised computing resources of limited availability. On

the other hand, models need to be more controllable in their generative

process to allow for precise interventions and human-directed creation.

Active research on disentangled representation learning has proposed in-

terpretable controls for global imagemanipulation (Härkönen et al., 2020).

Commondimensions of variance in the data are first identified by themodel

and later manually sighted and named. Interpretable controls allow for the

manipulation of images in a single specific aspect, such as a person’s age, the

exposure of a photograph or the depicted time of day, while maintaining

the others (Figure 3.3). Similarly, localised semantic image edits (Collins

et al., 2020) transfer the appearance of a specific object part froma reference

image to a target image, e. g. one person’s nose onto another person’s face.

Second, generativemodels can be augmented to be turned fromcreativity

support tools intomore autonomous creative systems (Saunders, 2012). For

this, some of the creative responsibilities conventionally held by the person

in charge of the generative process need to be handed over to the system,

such that it is, for example, able to formulate an intention or evaluate its

own output. This may require endowing the systemwith additional, more

sophisticated abilities and responsibilities.We argue, that as a start, gener-



ARTISTIC AND CREATIVE USES OF GENERATIVE MODELS 63

ative modelling approaches need to be adapted to allow for the generation

of novel artefacts, instead of reproducing the examples from a given dataset.

Our framework for automating generative DL, presented in the following

Section 3.2, provides specific targets for automation in the development

and deployment of generative models.

While creativity is arguably an essentially contested concept (Jordanous

& Keller, 2016) and there exist a variety of individual definitions, many

of those include the notions of novelty, surprise and some form of value

(e. g. usefulness or significance) (Boden, 2004; Runco & Jaeger, 2012; Jord-

anous, 2013). Our analysis of GAN artists’ work highlights a commonality

in their practices: divergence from the standardmachine learning practice

to produce novel, perhaps surprising, outputs. The early focus of this thesis

research was novelty, which eventually shifted to diversity. Yet, there is a

connection between the two concepts which we discuss in the introduction

(1), together with their connection to similarity as a foundational relation.

The novelty of an artefact can be interpreted as the amount of diversity

that it adds to a collection. Amodel that produces diverse output, possibly

more diverse than a reference dataset, will thus also generate novel artefacts.

Hence, the following section focuses on the aspect of novelty and how the

output of generative models could be assessed in regard to novelty.

3.1.4 EVALUATING NOVELTY

As many evaluation schemes for creativity include notions of novelty, an

exhaustive review of the literature is beyond the scope of this chapter and

thesis. We focus here on explicit measures of novelty, in particular in the

context of generative models. Currently, novelty can be achieved by tun-

ing the stochasticity of a generative process whenever it is conditioned on

a distribution of probabilities. In GANs, the latent code truncation trick

clips values drawn from a normal distribution to fall within a limited range

(Brock, Donahue & Simonyan, 2019). On the other end, a temperature

parameter can be applied to scale a network’s softmax output (Feinman&
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Lake, 2020). Both improve the quality of individual artefacts at the cost of

sample diversity.While the original intention is to decrease randomness

to obtain artefacts closer to the mean, theymay also be able to achieve the

inverse. Neural network-basedmethods have been proposed for the gen-

eration of novel artefacts, e. g. CAN (Elgammal et al., 2017), Combinets

(Guzdial & Riedl, 2019), as well as several measures for the evaluation of

GANs, e. g. the Inception Score (Salimans et al., 2016) and FID (Heusel

et al., 2017), discussed inmore detail in Section 2.4. However, none of these

measures can be used to estimate novelty or to compare the extent to which

DLmethods are capable of producing it. For a measure that might fill this

gap, we can draw fromwork in CC.

Ritchie (2007) proposes a formal framework of empirical criteria for the

evaluation of a computer program’s creativity, advocating for a post-hoc

assessment based on a system’s output and independent of its process. A

definition of creativity focuses on novelty, quality and typicality, where the

latter refers to whether an artefact matches the intended class (e. g. when

generating jokes, whether it has the formal structure of a joke). Quality

(also denoted as value) and typicality are expressed as ratings. Novelty is

seen as the relationship between the input and output of a program and is

formalised in a collection of proportions in set-theoretic terms.

Most interesting for our purposes is Ritchie’s concept of an ‘inspiring set’,

which could be treated as the knowledge base but, in the context of learning

algorithms, does not have to be equivalent to the training set. Representing

the examples that the author of a generative system hopes to achieve, it

would be too trivial to allow a learning algorithm a glimpse at such examples.

Rather, an inspiring set can inform about the necessary choices in the design

process of a generative system thatmight evoke the desired output. Current

discussions around the inductive biases of the fundamental building blocks

in DL pose similar questions. Recent work has tried to leverage the specific

choice of structure in hybrid neuro-symbolic models (Feinman & Lake,

2020). This idea leaves room for the question of how the concept of an

inspiring set could be integrated into the training and sampling schemes of

a generative model.
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In work on curious agents, Saunders et al. (2004, 2010) use Self Organ-

ising Maps (SOMs) (Kohonen, 1988), to measure the novelty of an input

through a distance metric in vector space and in comparison to all other

examples stored in the SOM. ‘Interestingness’ is estimated through an ap-

proximation of theWundt curve (Berlyne, 1960) (the sumof two sigmoids),

to the effect that the score peaks at moderate values of novelty and rapidly

drops thereafter. This model is based on the understanding that for new

stimuli to be arousing, they have to be sufficiently different but not too

dissimilar from known observations.

Pease,Winterstein and Colton (2001) discuss novelty in relation to com-

plexity, archetypes and surprise, and propose specific metrics for these as-

pects. First, an item is deemedmore novel themore complex it is. Complex-

ity is defined in terms of the size of a given domain and how unusual and

complicated the generation of an item is, which attempts to capture how

many rules and howmuch knowledge was necessary in the process. Second,

responding to Ritchie’s typicality, novelty is defined as the distance of an

item to a domain’s given archetypes. This approach is similar to Saunders

et al. (2004, 2010) in that it compares items to a knowledge base and com-

putes distances in vector space. Third, the authors argue that ‘fundamental’

novelty evokes surprise as a reaction. However, a metric for surprise cannot

be used to prove novelty, it only shows the absence of ‘fundamental’ novelty

through the lack of surprise.

At the beginning of this section, we pointed towards two applications of

generativemodels in creative settings: creativity support tools andautonom-

ous creative systems.We discussed approaches for the evaluation of novelty,

primarily from the CC literature, for the benefit of artistic practices, in par-

ticular when using creativity support tools where human supervision is

essential. In the following section, we focus on advancing autonomous cre-

ative systems by endowing themwith creative responsibilities to increase

the system’s creative autonomy. For this, we adopt automation techniques

from AutoML.
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3.2 AUTOMATING GENERATIVE DEEP LEARNING FOR ARTISTIC

PURPOSES

The increasing demand in industry and academia for off-the-shelf machine

learning methods has generated a high interest in automating the many

tasks involved in the development and deployment of machine learning

models. Such automated machine learning (AutoML) can make machine

learning more widely accessible to non-experts, and decrease the work-

load in establishing machine learning pipelines, amongst other benefits.

Examples of the different task areas thatAutoML techniques address include

data preparation, feature engineering, neural architecture search (NAS),

hyper-parameter optimisation andmodel selection. AutoML is a very act-

ive area of research. The progress to date has been documented in several

surveys (e. g. Truong et al., 2019; Tuggener et al., 2019; Chauhan et al.,

2020; He, Zhao & Chu, 2021) and a book (Hutter, Kotthoff&Vanschoren,

2019). The AutoML challenges (Guyon et al., 2019) and the workshop at

the International Conference onMachine Learning (ICML) have evolved

into a dedicated AutoML conference (Guyon et al., 2022; Faust et al., 2023;

Eggensperger et al., 2024). Crucially though, at the time our contribution

was published (Berns et al., 2021), the automation of generative modelling

pipelines had received little attention.

In the evolution of DL as a subdomain of machine learning, some of the

early advances consisted of incorporating previouslymanual pre-processing

steps into an automated optimisation pipeline.While somemachine learn-

ing algorithms require the extraction and construction of features by hand

and image filters have to be selected depending on the task, modern DL

techniques have no issues with handling raw data, and image filters can

easily be learned end-to-end. This brings significant advantages, allowing

us to scale up the purely computational processes. This has contributed

to the consistent success of the field. As the complexity of DL and its im-

pact on society have increased, it has becomemore pressing and difficult to
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solve remainingmanual tasks and decisions, such as the choice of network

architecture and the tuning of hyper-parameters.

While AutoML is concerned with automating solutions for classification

and regression, methods in generative DL deal with the task of distribution

fitting, i. e. matching a model’s probability distribution to the (unknown)

distribution of the data (see Section 2.1). NAS, an important topic of re-

search in AutoML, has been extended to GANs (Gong et al., 2019; Y. Fu et

al., 2020; C. Gao et al., 2020;M. Li et al., 2020) and diffusionmodels (L.

Li et al., 2023). Moreover, evolutionary approaches have been applied to

optimising the GAN training objective (C. Wang et al., 2019) and other

training parameters (Costa et al., 2019). Even though certain aspects of

the GAN training scheme have been automated, we highlight three gaps

in existing research: 1) there exists no unified automation framework for

generative DLmore generally; 2) existing work does not address the use

of generative DL for creative applications; 3) researchers have not sought

to motivate the automation of DL systems to endow artificial systems with

creative autonomy.

We propose a framework for the automation of generative DL that, on

the one hand, adopts core concepts from AutoML, and on the other hand,

is informed by the theory and practice of CC research (Colton&Wiggins,

2012). The framework has two goals. First, to highlight opportunities for

automation in the generative DL pipeline for artistic purposes. Second, by

automating some parts of this pipeline, to endow a computational system

with more creative responsibilities (Colton, 2009), i. e. the ability to make de-

cisions that have a high impact on the outcome of a creative process. These

individual decisions can be understood as targets for automation when fram-

ing the design of a generativeDLpipeline as a formof co-creativity (Kantosalo

et al., 2014). Under this interpretation, we inform the automation of gen-

erative DLmore specifically with well-established, generic CC strategies to

equip computational systems with creative responsibilities. Our framework

differs from AutoML not only in its stronger focus on generative models

but also in the assumed goals of the generative DL pipeline. More specific-

ally, we identify targets for automation based on the wide and successful
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application of generative DL in artistic work. In contrast to standard ap-

plications, people in an artistic setting prefer to produce artefacts of high

cultural value over perfectly generalised reproductions of the training data.

In this sense, they aim to actively diverge from a given data distribution (see

previous Section 3.1).

In connecting the two research fields, AutoML and CC, our framework

benefits the long-term goal of artificial intelligence to develop autonomous

systems that can devise novel concepts, strategies and artefacts. Both auto-

mation and creativity play a vital role in developing autonomous systems

and in enabling open-ended innovation. For automation, we can leverage

the techniques from AutoML. However, these techniques often optimise for

a specific, clearly defined objective and in this sense are narrowly-focused

solutions. Per definition, novel artefacts cannot be specifically defined a

priori. They are unknown unknowns (Lehman et al., 2025). By incorporating

insights from CC, the framework extends beyond task-specific automation

towards a collaborative creative process between human and computer.

Our main contribution is to gather, standardise and highlight oppor-

tunities to automate generative DL for artistic applications. We identify

commonalities of DL pipelines in artistic projects and bring them together

in a common framework. This provides a starting point for handing over

creative responsibilities in a range of applications, not only artistic. We

concentrate our efforts on generative DL, rather than generative machine

learningmore generally.While we assume themajority of applications to be

built on DL approaches, we do not rule out that other generative machine

learningmethods might be used within the framework. Our contribution

does not consist of a formal solution to a singular automation problem.

Instead, we aim to provide a big-picture view of all automation tasks and

their associated opportunities and challenges, to be solved in future work.

To leverage insights from CC in the development of our framework, we

first clarify the relationship between automating generative DL and en-

dowing artificial systems with creative responsibility. We then outline a

standard non-automated pipeline for the development and deployment of

generative DLmodels, and show how applications in artistic settings differ
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from this standard pipeline. Drawing from these two sources, we lay out

the automated generative DL pipeline, describe several targets for auto-

mation therein and suggest ways in which automation could be achieved.

We continue with an illustrative example to demonstrate how our frame-

work can give inspiration and guidance in the process of gradually handing

over creative responsibility to a generative system. We analyse the rela-

tionship between automation and creative autonomy in the context of our

framework.We conclude the chapter by discussing the limitations of our

framework and suggest directions for future work.

3.2.1 AUTOMATED, ARTISTIC DEEP LEARNING AS CO-CREATION

We believe that the development of a framework for automated generative

DL can benefit from the insights gathered over more than two decades

of CC research because the automation of targets in generative DL can be

considered a specific instance of the grand CC goal to give computational

systems responsibility over decisions in a creative process.

With each creative responsibility that is handed over to the system, i. e.

with each target that is being automated, we increase the computational

system’s creative autonomy (Jennings, 2010; Guckelsberger, Salge & Colton,

2017; McCormack, Gifford &Hutchings, 2019), i. e. its capacity to oper-

ate independently of a human instructor, allowing for it to be ultimately

considered a creator in its own right (Colton, 2008b). Crucially though,

the users of automated generative DL typically want to retain some control

over the automation and its outcome. In developing our framework, we

must thus decide which responsibilities should be retained to sustain cer-

tain modes of interaction between the artistic users and the generative DL

system.

To this end, it is useful to frame this interaction in the process of automa-

tion as a co-creative act.We adoptKantosalo et al.’s (2014)workingdefinition

of human-computer co-creativity as ‘collaborative creativity where both the

human and the computer take creative responsibility for the generation of
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a creative artefact’. To qualify as a collaborative activity, both human and

systemmust achieve shared goals (Kantosalo et al., 2014, drawing onTerveen,

1995).

Different automation strategies can enable two coarse forms of interac-

tion. First, the user and system could engage in task-divided co-creativity, in

which ‘co-creative partners take specific roles within the co-creative process,

producing new concepts satisfying the requirements of one party’ (Kantos-

alo &Toivonen, 2016). Second, they could engage in alternating co-creativity,

where both partners ‘take turns in creating a new concept satisfying the

requirements of both parties’ (Kantosalo &Toivonen, 2016).

Alternating co-creativity requires the computational system to not only

exhibit creative responsibility for either the generation or evaluation of arte-

facts but for both. Crucially, even a non-automated generative DL system

can be considered creative in a minimal sense, in that it (despite the name)

not only ‘merely generates’ (Ventura, 2016) new samples or artefacts, but

also evaluates their proximity to the training set via its loss function. This is

accomplished either explicitly, through likelihood estimation, or implicitly,

with the help of a critic in an adversarial setting. The system thus produces

artefacts that are novel and valuable, realising both requirements of the two-

component standard definition of creativity (Runco& Jaeger, 2012).We

write ‘creative in a minimal sense’ because the novelty of artefacts will de-

cline, while their value increases, the better the system approximates the

(unknown) distribution fromwhich the training data was drawn.

The definition of the training set and loss function by the user satisfies

that both partners interact towards shared goals. Through different ways

to automate the machine learning pipeline, we can free the human partner

from certain manual work, while retaining specific creative responsibilities.

We believe that providing the computational system with creative re-

sponsibility in the formof automating certain targetsdoesnot constrain, but

rather expands the shared creative process. The person or producer has, due to

their personality and cognitive characteristics, a strong impact on the creat-

ive process, product, and the creative environment, i. e. the press (Rhodes, 1961;

Jordanous, 2016). However, human creativity is also limited, e. g. due to
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our bounded rationality (Simon, 1990). A computational system can com-

plement human shortcomings, e. g. via its higher information processing or

memory capacity, enabling creativity on larger search spaces (Boden, 2004;

Wiggins, 2006b).

3.2.2 THE STANDARD GENERATIVE PIPELINE AND ARTISTIC

DEVIATIONS

We outline the various steps in the process of building and deploying a gen-

erative DLmodel for standard non-automated usage and contrast it with

the particular differences that arise when using a model in different artistic

contexts. Additionally, we provide a brief overview of post-trainingmodific-

ations that aim for active divergence (Berns&Colton, 2020), allowing us to

manipulate a model into producing artefacts that do not exactly resemble

the training data. Amore detailed survey of such techniques can be found

in Broad et al. (2021). Our goal is to highlight themany choices that have to

be taken in the construction of a generative DL pipeline and identify those

tasks which pose an opportunity for automation in our framework.

DATA ACQUISITION

The first step towards developing generative models is data acquisition.We

distinguish two cases: (A) using pre-existing datasets and (B) creating new

ones. It should be noted, that generative machine learning is also applied

in privacy-sensitive areas such as medicine, and in the augmentation of

small datasets, as it can produce synthetic data to replace an entire dataset

or supplement it with additional samples. The augmentation by way of a

generative model can be necessary whenever a dataset is too small to train

another model (e. g. a classifier) with a high number of parameters (i. e.

weights and biases in a neural network). However, when the generative

model itself requires a large amount of training data, other pre-training

data augmentation steps through graphic manipulations can help to do so

effectively (Karras, Aittala et al., 2020).
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Using Existing Datasets In a research setting, it is most common to use

standard benchmark datasets or subsets thereof, for training and evaluating

generative models. It is generally best practice in machine learning to split

the data into training, test and validation subsets. However, generative

models are sometimes trained on the entire dataset and alternativemethods

of evaluation are used.

Creating aNewDataset When creating a dataset from scratch, the goal

is normally to fully represent the subject or category that is being mod-

elled. Therefore, as much data as possible will be collected to maximise

variation in the dataset and to represent all modes as evenly as possible, i. e.

the variety of artefacts that are statistically significantly different from one

another. Creating varied, high-quality datasets with the large amounts of

data required for training generative models can be very labour-intensive

and usually the purview of a select few academic and industry laboratories.

This is often performed in a distributed fashion, where many workers are

involved in collecting, evaluating and labelling data samples.

In contrast to datasets created for industrial and research applications,

datasets for artistic purposes are often composed with very different goals.

It may not be important to accurately and fully represent a subject matter

or domain, as long as the end goal produces interesting results. Datasets

are often much smaller, and the considerations for the desired aesthetic

characteristics in the results are muchmore important in deciding which

examples should and which should not be included in the dataset. A lot of

effort will go into sourcing material and the resulting datasets are much

more likely to reflect an artist’s individual style and (visual) language. In

some cases, the entire dataset will come from an artist’s personal archive

(Ridler, 2017).

TRAINING

The objective of training a generative model is to learn a mapping func-

tion from an easily controllable and well-understood distribution, e. g. a
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standard Gaussian, to a distribution of much higher complexity and dimen-

sionality, e. g. that of natural colour images. There are a number of different

training schemes, which apply to different architectures. They are com-

monly categorised by their formulation of the training objective. Methods

maximise the likelihood of the data either explicitly (such as auto-regressive

and flow-basedmodels), approximately (e. g. VAEs), or implicitly (GANs).

When using a method that explicitly models the data, training will be per-

formed until a desired likelihood score is reached.With VAEs, the goal of

training is to maximise the log-likelihood of the dataset. In the adversarial

setup, the decision of when to stop training is less clear. Training is often

run for a pre-specified period and the results are evaluated qualitatively. A

fully trainedmodel ideally represents the entire training data distribution

and can be sampled randomly to produce good results. Another desirable

quality is that interpolation between two input vectors is matched in the

outputs.

Generalisation is a goal of almost all machine learning systems and ap-

plications. Amodel should be able to generalise to unseen data, while not

underfitting or overfitting the training data. In an artistic setting, however,

this is often less important, and if it produces interesting results, artists may

often embrace the aesthetic qualities of an underfit (Shane, 2018) or overfit

model (Broad&Grierson, 2017).

EVALUATION

The general performance of a model is measured in terms of the distance of

the learned distribution to the target distribution. Amodel further ideally

covers all modes in the input dataset. For generativemethods that explicitly

model a probability distribution over the data, the (log) likelihood can

bemeasured and evaluated directly. Implicit methods, such as GANs, have

to be assessed with other metrics such as the Inception Score (Salimans

et al., 2016) and the FID (Heusel et al., 2017). As these metrics are only a

simplified standard for evaluation and have some shortcomings, additional

qualitative checks might be needed to ensure the fidelity of the output.
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While in some artistic settings, good quantitative performance might

matter, it can be ignored entirely in others, and a qualitative assessment of

the output is usually muchmore important. Quality, diversity and accuracy

may not be the only considerations (and may even be actively avoided),

whereas novelty, interesting misrepresentations of the data and other aes-

thetic qualities may be desired. Due to the variety of qualities that an artist

might look for in a model’s output, there is no unique or widely used stand-

ard metric for evaluation. This is rooted in the highly individualistic nature

of artistic work and linked to the additional strategies for iterative improve-

ments and curation of the output which we discuss in the following subsec-

tions.

ITERATIVE IMPROVEMENTS OF OUTPUTS

Here we look at the diverging strategies for the gradual improvement of a

system’s output in research and development versus an artistic setting.

Iterating on the Model In the research and development of generative

models, the dataset often remains fixed, while various aspects of the net-

work architecture and training regime will be altered. For instance, various

optimisation hyper-parameters will be evaluated, such as learning rate, mo-

mentum or batch size; or network configurations: number of layers, type

of activation functions, etc. Different training regimes may also be experi-

mented with, such as optimisation algorithms, loss functions, andmethods

for regularisation and sampling.

Iterating on the Dataset In artistic contexts, it is much more common

to iterate on the dataset and keep other parameters fixed, before possibly

making iterative improvements to the network andmodel parameters. Data

that appears to be producing unwanted results, or skewing the model in

certain directions may be removed. Revisiting the composition of samples

(such as cropping), and the removal and addition of samples to refine the

dataset may be undertaken (Schultz, 2020).
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DEPLOYMENT

Generative models are used differently in standard and artistic settings

in accordance with their respective goals. We here differentiate between

standard sampling and output curation.

Standard Sampling Generativemodels are trained with the goal that they

can be sampled randomly and every generated output will be of value and

high typicality (Ritchie, 2007). Therefore, in most standard applications

models are simply sampled randomly with no additional filtering taking

place.When filtering is performed, it is often done with the goal of quality

evaluation, such as using the discriminator for evaluation quality (Azadi

et al., 2019), or using the contrastive language-image pre-training (CLIP)

model (Radford et al., 2021), as was the case in evaluating and ranking

the generated outputs of the discrete VAE model in the DALL-E image

generation project (Ramesh et al., 2021).

Output Curation Rather than sampling randomly from amodel, artists

will often spend a lot of time curating amodel’s output. The goal of building

a model in an artistic setting is not necessarily to generate only samples of

high value, but to produce some interesting or novel results, which can then

be hand-selected. This can be through filtering samples or searching and

exploring the latent space. In some cases, such as combining language-image

models with latent space search for text-to-image generation, e. g.Murdock

(2021), much effort goes into prompt engineering to find a specific latent

vector that produces interesting results. These examples can be seen as a

particular cases of explorative creativity (Section 2.2).

POST-TRAINING MODIFICATIONS

Having looked previously at the curation of a model’s output in an artistic

setting, i. e. the act of identifying the few artefacts of interest in a large set

of output samples, we now turn to active divergence techniques (Berns &

Colton, 2020) which aim at consistently producing results that diverge
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from the training data. These strategies, specifically developed in creative

contexts for the purpose of art production, include hacks, tricks andmodi-

fications to themodel parameters, as well as the daisy-chaining of several

models.

One approach is to find a set of parameters where the generated arte-

facts blend the characteristics of multiple datasets. For this, a pre-trained

model can be fine-tuned on a second dataset, different from the original

data. As soon as the results present an optimal blend between the two data

domains, the fine-tuning can be stopped. This mixture of datasets can also

be achieved by blending the weights of two models. Either interpolating

on the weight parameters of the two models or swapping layers between

models, so that the newmodel contains higher-level characteristics of one

model and lower-level characteristics of another. Another method consists

of chaining multiple models together. This allows artists to explore and

combine the characteristics of different datasets. Unconditional generative

models will often be chained together with domain-translation models,

e. g. CycleGAN (Zhu et al., 2017) for sketch-to-image translation, or style

transfer algorithms (Gatys, Ecker & Bethge, 2016). Such pipelines aim to

produce artefacts that reflect the complex combination of characteristics

frommany datasets.

Other approachesmakemodifications to themodel to have artefacts com-

pletely diverge from any training data. An existing pre-trainedmodel can

be fine-tuned using a loss function that maximises the likelihood over the

training data (Broad, Leymarie &Grierson, 2020). Other techniques intel-

ligently combine learned features across various models (Guzdial & Riedl,

2019), or rewrite theweights of themodel (Bau et al., 2020), re-configuring

them to represent novel data categories or semantic relationships. In con-

trast, network bending does not require any changes to the weights of the

model (Broad, Leymarie&Grierson, 2021). An analysis of themodel is per-

formed to determine which features are responsible for generating different

semantic properties in the generated output. Deterministically controlled

filters are then inserted as new layers into a model and applied to the activa-

tionmaps of features.
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Figure 3.4: Automated generative deep learning (DL) framework in three stages:
preparation (blue), configuration (yellow) and presentation (green).
The flow starts in the top left and follows the arrows. Individual steps
illustrate targets for automation (rectangular boxes).

3.2.3 THE AUTOMATION FRAMEWORK

We build our framework drawing on the standard generative DL pipeline

and its artistic deviations, as previously described. The important difference

between the pipeline for a standard generativemodel and its use in a creative

setting is the overall objective of the project.While the former focuses on

themodel and its performance in terms of fitting the data distribution as

closely as possible, a good model in the context of the latter can reliably

produce an output of high cultural value.We therefore do not simply extend

core concepts of AutoML, but join themwith practices observed in the wild

and re-frame themwithin the paradigms of CC.We first discuss automation

as a search problem, connecting it to the idea of transformative creativity, and

highlight some techniques as potential approaches.We then go on to list

the targets for automation in a generative DL pipeline for artistic purposes.

Some decisions have implications for other targets further down the line,

e. g. the number and type of hyper-parameters depend in part on the kind

of network architecture and optimisation algorithm. While the process

is presented as a sequence of consecutive steps from input to output, it

should be understood that all steps are optional and flexibility is required.

Improving a system’s output works best as an iterative loop in which we

might go back and adjust or intervene at any given prior step.
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We define the terminology of our framework as follows.With automation,

we refer to the act of addressing with computational means those decisions

in a generative DL pipeline that normally would be taken by a person. A

target is defined as one such decision which provides an opportunity for

automated instead of manual tuning.

AUTOMATION AS A SEARCH PROBLEM

A generative pipeline is automated by assigning responsibilities over indi-

vidual targets to either the user or the system.While those retained by a

person will have to be tunedmanually, all other targets require the system

to determine a configuration independently. This problem is analogous to

the search problem over hyper-parameters in AutoML. The possible values

of each automated target effectively construct a search space over possible

system configurations. The number of total permutations, and the resulting

search space, can grow rapidly with every independent target added. Search

is similarly connected to transformative creativity (Wiggins, 2006b), where

the properties of a conceptual space are changed such that different artefacts

can be reached (Section 2.2).

Limiting continuous parameter values to a reduced range or a set of dis-

crete values, as per grid search for machine learning hyper-parameters, can

help make the problem more feasible. The formulation as a search prob-

lem is the standard way to tackle automation in AutoML. However, ex-

tensive search over meta-parameters can be computationally expensive,

time-consuming, cause high energy consumption and consequently have a

considerable environmental impact.

The extensive work on search problems provides numerous approaches

to constrain this search (Russell & Norvig, 2021). Strategies range from

complete, to informed, to randommethods.While an exhaustive search can

yield an optimal solution, it can be impractical and often infeasible for large

search spaces.Randomsampling, on the other extreme, canbe a surprisingly

effective strategy at a low cost andwith potentially surprising results.While

Jennings (2010) requires a system tomeet the non-randomness criterion to be
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considered creatively autonomous, this definition does not rule out all uses

of randomness and allows for testing random perturbations to a system’s

standards. AI-based searchmethods can benefit frommeaningful heuristics

and leverage both exploration and exploitation (e. g. evolutionary search).

Gradient-basedmethods have seen a lot of progress in recent years. Other

approaches include rule-based selection and expert systems,withdrawbacks

including that they require manual construction and expert knowledge.

Finally, machine learning itself can be used to choose values through a

pre-trainedmodel. Indeed, practitioners in generativeDL tend togodirectly

to automation viaDL. In particular, recent advances in contrastive language-

image pre-training (Radford et al., 2021) allow for computing similarities

between text and images. Such amodel could take over the responsibility

of assessing whether an image looks like a text description, or vice versa, at

any point in the pipeline where a human artist would do the same task. All

of the above approaches can be applied iteratively over subsets of the search

space, gradually limiting the range of possible values.

AUTOMATION VERSUS AUTONOMY

While we have primarily focused on increasing a system’s creative autonomy

throughautomation,our frameworkdoesnotgrant a systemasmuchautonomy

as to enable it to act entirely independently in response to its ownmotiv-

ations (Guckelsberger, Salge & Colton, 2017). Instead, a system within

our framework would remain inactive until engaged. Such engagement can

range from a stimulus through available sensors, e. g. cameras, microphones

or heat sensors, to a text or image prompt or an entire inspiring set (Ritchie,

2007), to more precise and detailed instructions. In any case, this choice of

input channel and sensibility has to be taken by a human and is not a target

in our framework.

We further assume the choice of generated media (image, audio, text,

video, etc.) to be made by a person prior to building a system. Naturally, it

is not difficult to imagine a setup in which this choice, too, becomes part

of the pipeline. Going one step further in autonomous automation, our
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framework and its targets make it possible to devise a generative system

which produces automated generative pipelines. In fact, itmight be possible

for a generative system to generate itself, much like a general-purpose com-

piler that compiles its own source code. This self-referential generation has

similarly been proposed in work on automated process invention (Charnley,

Colton& Llano, 2014).

TARGETS FOR AUTOMATION

Below we define and discuss the many tasks and decisions that are part of

a generative DL pipeline in an artistic setting and which can be automated

within our framework.Wherever applicable, we explain how a target relates

to concepts of AutoML and CC.

The following subsections identify individual targets for automation.

The complete process is illustrated as a sequence of steps in Figure 3.4. As

per this diagram, we organise the steps into three stages: 1) a preparation

stage to gather relevant materials, 2) a configuration stage, where the models,

training regimes and parameters are tuned to produce valuable output, and

3) a presentation stage where the user deploys a final model and curates the

output. The first target (selecting a pre-trainedmodel) is optional and can

be skipped to start from scratch instead. In this case, we begin with data

preparation and curation.

Pre-trained model (optional) It might not be necessary to train a network

fromscratch if anappropriatepre-trainedmodel is available, especiallywhen

a quick system setup is desired. A list of pre-trainedmodels, tagged with

keywords associated to their generative domain, could provide a knowledge

base for a system to select, download and deploy a model. This can either

be directly put to use, in which case the system could immediately skip

to evaluating the model, or it can be fine-tuned on a smaller set of data.

Such additional fine-tuning could be dependent on the outcome of the pre-

trainedmodel’s evaluation. Only if the pre-trainedmodel’s output is not

satisfactorywould it have to be further optimised or de-optimised.Working
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with a pre-trainedmodel has implications for the subsequent choices of the

network architecture, training scheme and loss function.

Data preparation and curation This preparation step includes the acquis-

ition, cleaning, augmentation and transformation of data samples, akin

to data preparation in AutoML. Starting with the data collection task, we

consider different data sources fromwhich a system could select. Drawing

on existing datasets, such as an artist’s private data collection, can intro-

duce important desirable biases and ensure high-quality output. In contrast,

scraping samples from the internet could contribute to the generation of

surprising results. Additional pre-trained generative models can provide a

source for synthesised data in large quantities.

An important addition to the pre-processing is data curation, in contrast

to simple cleaning. Rather than filtering out noisy samples, for artistic pur-

poses, it can be desirable to add ‘noise’. To this end, it is not uncommon in

an artistic context to mix multiple datasets. In this additional step, the sys-

tem thus further refines the dataset, similar to an artist adding or removing

individual samples, which can influence the qualities of the system’s final

output. This is an opportunity for iterative improvements and for alternat-

ing co-creativity (Kantosalo &Toivonen, 2016), given that the system both

generates and evaluates. Automation in the cleaning and curation tasks can

be achieved, e. g. in the image domain, by employing other computer vision

or contrastive language-image models.

Network architecture and training scheme This target for automation defines

the choice of possible architectures (e. g. GAN, VAE, Transformer), which

could include non-neural methods. Neural architecture search (NAS) in

AutoML is concerned with finding optimal combinations of basic building

blocks of artificial neural networks in terms of performance on a classifica-

tion or regression task, an immensely difficult optimisation problem.We

recommend in our framework to instead select from tried-and-tested archi-

tectures, only altering parts of the architecture with a direct influence on
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the output, e. g. the number of upsampling convolutions which determine

the final output image size.

The training scheme is largely influenced by the choice of architecture.

In the case of GANs, the training scheme includes the choice of whether to

train the discriminator and generator networks in parallel or consecutively

and howmany individual optimisation steps to perform for either.

Loss function The formulation of the basic loss term is highly dependent

on amodel’s training scheme and constitutes theminimum requirement

for successful training. However, additional loss terms can change or sup-

plement the basic term for further refinement of the training objective. For

example, a novelty loss term could be added by leveraging measures of nov-

elty (briefly discussed above in Section 3.1.4). As a central part of guiding

the model parameter optimisation process, any modification to the loss

terms will strongly impact the modelled distribution and consequently the

system’s output. In other contexts, methods have been proposed for the

automatic invention of objective functions (Colton, 2008a). These could

provide a starting point for adapting the approach to the constraints of loss

functions in generative DL.

Optimisation algorithm The selected algorithm will be responsible for

adjusting a model’s parameters through error correction informed by the

gradient of the loss function. This choice can potentially have an influence

on the system’s output, as it is responsible for finding one of the potentially

many local minima in the loss landscape. As it determines whether conver-

gence can be reached at all, this decision can ultimately make or break the

success of the training process. It can further largely influence convergence

speed and be critical in time-sensitive setups. The choice of optimisation al-

gorithmsmight be limited by the previous selection of network architecture

and corresponding training scheme.
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Hyper-parameter tuning Optimisation of batch size, learning rate, mo-

mentum, etc. can be achieved viaAutoMLmethods, and there is much active

research in this area.

Model selection and evaluation From all the possible models, the best one

has to be selected in accordancewith the given criteria relevant to the task at

hand.As the training process is essentially a succession of gradual changes of

model parameters over time, this task is equivalent to identifying the right

moment to stop training. Additionally, and in order not to lose previous

training states, model checkpoints can be saved along the way as training

progresses and whenever model evaluation satisfies given criteria. After

training is finished, the best model has to be selected from all candidate

checkpoints. In standardML projects, this would normally be done with

respect to the primary concern of predictive accuracy. But in generative

projects, other considerations may include how surprising the outputs are,

synthesis speed (for tool or real-time uses) and coherence of the results.

Such criteria could be employed in a weighted sum of metrics, where the

system can give more or less emphasis to individual terms. This would

allow the combination of standardmetrics like FID in the image domain for

general output fidelity with a measure for sample similarity compared to a

reference sample(s), inspiring set or text prompt via a contrastive language-

image model.

Output curation Having obtained a successfully trainedmodel, we want a

system to reliably produce high-quality output.While efforts in previous

steps were aimed at refining themodel which is at the core of the generative

process, this final automation target aims to raise the system’s overall output

quality. Two approaches come tomind: filtering and search. In the former,

a system could select those samples from a large batch of model outputs

that rank highest against a given metric. In the latter, the system could

search for vectors directly in a model’s latent space via one of the various

methods we have outlined in the section above on approaches to search

problems. The evaluation measure, as before, could be the similarity of
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samples compared to a set of reference samples, an inspiring set or a text

prompt via a contrastive language-image model.

3.2.4 AN ILLUSTRATIVE EXAMPLE

In early 2021, a generative DLColab notebook (Bisong, 2019) calledThe

Big Sleep was shared online (Murdock, 2021). It allows for text-to-image

generation (Agnese et al., 2020), effectively visualising a user-given text

prompt, often with innovative content and design choices, as per the ex-

ample in Figure 3.5. This is an instance of an artistic deviation from the

standard pipeline, where CLIP (Radford et al., 2021) is used to evaluate

a generated image with respect to a given text, driving a gradient-based

search for latent vector inputs to a generativemodel called BigGAN (Brock,

Donahue & Simonyan, 2019). In more recent text-to-image approaches,

instead of searching the latent space of a model, the image generation is

directly conditioned on the text prompt (Rombach et al., 2022).We use

this setup as an example to identify the following places where automa-

tion could be introduced, based on our framework.We highlight concrete

techniques and references for automation from the literature. While the

notebook comprises a fairly simple text-to-image system, the same ideas

of automation are potentially applicable to larger commercial systems, like

OpenAI’s ChatGPT andGoogle Gemini. These systems likely already im-

plement similar strategies for autonomous decision-making, albeit not for

creative responsibilities, but rather in contentmoderation and the selection

of specialised synthesis models.

In terms of pre-trained model selection, numerous people have substituted

BigGANwith other GANs generators. This creative responsibility could be

automated, with the system choosing from a database of models and in-

stalling new ones into the notebook. In terms of data preparation and curation,

users often choose imaginative text prompts, as the notebook often pro-

duces high-quality, surprising results for these. This could be substituted,

for example, with automated fictional ideation techniques (Llano et al.,
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Figure 3.5: Image generated by the Big SleepColab notebook for the prompt “The
Melbourne skyline in pastel colours”. Note the appropriate presenta-
tion of content and style, and additional pastel strokes in the sky as an
unprompted innovation.

2016). The author of the Colab notebook,Murdock (2021), innovated in

loss function definition, employing patches from generated images rather than

the entire image to evaluate its fit to the prompt. Various image manipula-

tion routines could be automatically testedwithin loss function calculations

from a library, with the system automatically altering the notebook at the

code level. As described in Colton et al. (2021), in some circumstances

where multiple images are being generated simultaneously, increasing the

learning rate can help searches fail quickly. Such hyper-parameter tuning could

be automated using standard AutoML techniques, guided by requirements

on acceptable search successes and output image quality. In terms ofmodel

selection and deployment, we can imaginemodels being used as creative web

services (Veale, 2013), with higher-levelCC systems accessing text-to-image

generators in a variety of projects.While using Colab notebooks like theBig

Sleep, people cherry-pick results for posting on social networks and in blogs,

effectively doing output curation. This would be an ideal target for automa-

tion with systems using CLIP and other techniques to evaluate images, also

possibly inventing new aesthetic measures (Colton, 2008a).
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3.3 DISCUSSION

In this chapter,we introduced the termactive divergence todescribe a common

theme in the artistic uses of generative deep learning (DL). Artists often

consciously break, tweak or otherwise intervene in data-driven generative

processes in order to produce artefacts, that are culturally valuable, but sub-

optimal fromapuremodellingperspective. For illustration,wepresented an

introductory overview of some active divergence techniques,many of which

require human supervision of important tasks and decisions.We identified

two avenues for the use of generativemodels in an artistic setting: creativity

support tools and autonomous creative systems. In the latter, the extent of

human supervision and decision-making is reduced and the system is given

more creative responsibilities and capabilities for automation.

Following this idea, we presented a framework for the specific purpose of

automatingmanual tasks in a generativeDLpipeline for artistic projects. For

this, we adopt core concepts of AutoML and adjust them in two ways. First,

we focus on generative DLwhich differs in the type of learning task, in that

it is concerned withmodelling the distribution of a training set, rather than

classification or regression. Second, we address the artistic usage of gener-

ative DL, where more emphasis is given to the qualities of the generated

output over the qualities of the model. The specialisation of our framework

inversely limits its generalisability in the same ways. On the one hand, there

might be artefact-driven applications of generative DL within or outside

CC that we have not considered. On the other hand, our framework is not

generally applicable to generative approaches in DL due to its special em-

phasis on artistic uses. Its focus on generative DL further limits its validity

for other generative modelling methods.

We have previously analysed the close relationship between the automa-

tion of generative DL systems and the central CC goal to increase a system’s

creative autonomy (Jennings, 2010; Guckelsberger, Salge & Colton, 2017;

McCormack, Gifford &Hutchings, 2019) by granting it more creative re-

sponsibilities (Colton, 2008b).Here, we complement the earlier analysis with
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knowledge of our concrete automation pipeline. The aim is to understand

to which extent our proposed pipeline already enables facets of creative

autonomy, and how CC insights on creative autonomy could be used to

advance it in future work.

Automation is necessary for creative autonomy, but the opposite does not

hold: while a fully automated generativeDL systemmight still exactly follow

user-prescribed goals, an autonomously creative system has the ‘freedom to

pursue a course independent of its programmer’s or operator’s intentions’

(Jennings, 2010). This firstly requires the system to autonomously evaluate

its creations, which is satisfied by any system that can be considered creative

(Ventura, 2016). In addition, an autonomously creative systemmust be capable

of autonomous change, i. e. initiating and guiding ‘changes to its standards

without being explicitly directed when and how to do so’ (Jennings, 2010).

To prevent trivial implementations of these capabilities, Jennings requires

them to not exclusively rely on random decisions.

To assess howmuch our pipeline realises creative autonomy, we can draw

onvariousCC approaches to enhancing autonomy in computational systems.

For instance, Colton (2009) proposes ‘repeatedly asking ourselves: what

am I using the software for now? Once we identify why we are using the

software, we can […] write code that allows the software to use itself for the

same purpose. If we can repeatedly ask, answer and code for these questions,

the software will eventually […] create autonomously for a purpose, with

no human involvement’. Our framework provides various candidate targets

to perform such a gradual elevation of a generative DL system.

For the evaluation of a concrete system built under our framework, we

consider the FACEmodel (Colton, Charnley&Pease, 2011; Pease&Colton,

2011) an adequate evaluation tool. In this evaluation model, systems are

described in terms of the creative acts they perform. Such an analysis al-

lows for the identification of newly added creative responsibilities through

automation.

Linkola et al. (2017) follow a more constrained approach and, as part

of a larger agenda to realise meta-creativity in CC, propose that creative

autonomy requires artefact-awareness, goal-awareness andpotentially generator-
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awareness, realised through operators of (self-) reflection and (self-) control

which closely match Jennings’ (2010) requirements for evaluation and

change.Whether a system built within our framework satisfies these defin-

itions depends on the extent to which it is granted responsibilities in the

form of automated decision-making for targets identified in the framework.

Wedemonstrate this based on extensions to a non-automated generativeDL

system. Such a system can be considered to have some generator-awareness

due to the role of its loss function (self-reflection), and the adjustments of its

own parameters through error correctionmethods like back-propagation

(weak self-control). A system’s control over changes to its generator can

be increased fromweak to strong within our framework, through the auto-

matedmanipulationofnetworkarchitectureor the selectionof apre-trained

model. Further putting a system in charge of its loss function within our

framework (strong control) affords it goal-awareness, such that it can be

considered autonomously creative if it is capable of modifying the loss func-

tion in response to its evaluation of generated output.

Crucially, more radical forms of creative autonomy do not eliminate co-

creation, i. e. cut ties with the system user entirely, but facilitate different

forms of interaction. To really become independent of its designer, a system

must not be isolated but interact with critics and creators that shape its

evaluation and changes (Jennings, 2010). A fully creatively autonomous

systemmight refuse thewill of its interactionpartner (Jennings, 2010;Guck-

elsberger, Salge &Colton, 2017), but we believe that this holds a promise

for innovative artistic collaborations between people and computational

systems, connecting artistic practices in generative DLwith the philosophy

and goals of CC.

Having discussed the potential and benefits of generative models for cre-

ative and artistic work, in the next chapter, we focus on how conventional

modelling approaches are limited for such applications as a generator’s

expressivity depends on the dataset it was trained on.



Chapter 4

L IMITATIONS OF CONVENTIONAL

GENERATIVE MODELL ING

When a generative model is used to produce artefacts, the variety of its

output is bound by the expressivity of the model.We posit that this holds

both for simple random sampling, as well as searching amodel’s latent space,

e. g. with a quality diversity (QD) algorithm. In any case, the possibility to

findartefactsofbothhighfidelity anddiversity is determinedby theproperties

of the learned latent space, which in turn is conditioned on the training

dataset.Wehypothesise that the expressivity of generativemodels is limited

by their statistical nature.

In this chapter,we addressRQ2(Howare the conventional generativemodelling

approaches limited in terms of output diversity?) through a principled study of the

expressivity of a variational auto-encoder (VAE).Wedefine expressivity as the

variety of different outputs that can be produced by a model, quantified by

a diversity measure. The objective of our study is to analyse the generative

capabilities of VAEs and give empirical evidence for its limitations. For this,

we define a parametric design space for a simple two-dimensional shape

generation task.We then compare the output diversity ofQD search in the

parametric space as a baseline against the search in amodel’s latent space.

From our findings, we derive practical recommendations for the use of

VAEs in generative systems, in particular in combination with QD search

algorithms.

The work in this chapter was presented at GECCO 2021:

Hagg,A., Berns, S.,Asteroth,A., Colton, S.,&Bäck,T. (2021). Expressivity

of Parameterized and Data-driven Representations in Quality Diversity

Search. Proceedings of the Genetic and Evolutionary Computation Conference.
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4.1 INTRODUCTION

While engineering-driven design optimisation looks for solutions to tech-

nical problems, artistic practices areusuallymore concernedwithgenerating

culturally valuable artefacts than optimising for a specific objective. For ex-

ample, let us consider shape optimisation. An engineering-driven design

process might seek to optimise the shape of an aeroplane wing in terms

of aerodynamics. Whereas a type designer, in addition to functional as-

pects, might also be concerned with the stylistic aspects of a typeface and its

glyphs. An artist, however,might be completely unconcernedwith function.

Yet, these two approaches are more similar than the seeming differences in

disciplines and objectives would suggest. Architects and engineers often

use the output of a design optimisation tool at the beginning of the design

process to survey the space of possibilities, where underlying parameters

can have complicated correlations (Bradner, Iorio &Davis, 2014). Candid-

ate solutions are then expanded or contracted upon in an iterative design

loop. Similarly, artists might set up an evolutionary system to find initial

inspiration and continue to tweak their system towards a desired outcome

through the iterative adjustment of the fitness function. In both workflows,

the diversity of the generated population is key to illustrating the range

of possibilities.We propose that initial diversity is the basis for the poten-

tial of later discoveries. Focusing on only one optimal individual too early

would limit the chances of encountering unexpected candidate solutions.

Evolutionary multi-solution approaches such as quality diversity (QD) al-

gorithmshave beendeveloped for this purpose of divergent search (Lehman

& Stanley, 2011).

Generative models such as variational auto-encoders (VAEs) (Kingma&

Welling, 2014) find application in this context for their ability to extract

patterns from raw data, learn representations for data examples that pre-

serve semantic relations and reliably produce more samples with similar

properties. Disentangled representation learning can furthermore equip a

model’s latent space with linearly separated factors of variation (Burgess et
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al., 2017), revealing the underlying parameters of a generative process. The

resulting feature compression network provides meaningful descriptors

or encodings to be used inQD algorithms (Cully, 2019; Gaier, Asteroth &

Mouret, 2020; Hagg, Preuss et al., 2020). Defining similar descriptors by

hand is a non-trivial task which requires expertise and intuition and, de-

pending on the domain, often cannot compete with an automated solution

(Hagg, Preuss et al., 2020).While the advantage of learning from data lies

in the recognition of complex patterns, we hypothesise that the expressivity

of the resulting generative model is entirely dependent on the quality and

representativeness of the data samples provided. That is to say, how well do

data examples represent the range of variations in a given domain? This is

especially critical when relying on such a model to produce novel examples

anddiverse sets of outputs. In fact, artistswho employ generative adversarial

networks (GANs) in their work often use a variety of strategies to actively

diverge from the intended purpose of these models and to produce outputs

significantly different from the original data (see Chapter 3 for a detailed

discussion). To the best of our knowledge, there does not exist sufficient

evidence on the capabilities and limitations ofQD search in learned latent

spaces.We address this gap with a principled study of a simple generative

system, aiming to derive from our findings specific recommendations for

the use of learned latent spaces inQD search, as well as evidence for the lim-

itations of statistical generative modelling approaches in terms of output

diversity.

We compare the performance of multi-solution evolutionary search in

the parameter space of a generative systemwith the search in the learned

latent space of a VAE that was trained with examples from the same system.

For this, we use a simple point-symmetric shape generation task and define

a parametric design space of black-and-white two-dimensional shapes. To

generate shapes, we build a generative system combining a variational auto-

encoder (VAE) with Voronoi Elites (VE) search, a modification of theMAP-

Elites algorithm.Anexampleof the resulting artefact sets (seeSection4.4.2)

produced by the two searchmethods is depicted in Figure 4.11.While the

latent space is built from a limited dataset, the parameter space represents
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the full range of the system’s possible output. The purpose of this work is

to understand how expressive either of the two search spaces is and, from

this knowledge, to derive recommendations for their usage. As an applica-

tion domain for our study, we choose to generate two-dimensional point-

symmetric black-and-white shapes, because of their simplicity and ease

of visualisation. While more complex domains might be closer to actual

applications, they wouldmake the presentation of our results less accessible.

Shape is an important basic design element in art, architecture, engineering,

as well as graphic and industrial design. On the one hand, shapes can carry

semantic meaning (e. g. letters of a font) and on the other hand, define the

properties and visualise the form of a physical object in engineering-driven

design (e. g. the cross-section of a wing optimised for aerodynamic flow).

Other possible butmore complex domains (e. g. sequences ofmovements of

a robotic arm) wouldmake the interpretation of our results more difficult.

Our work is relevant in two scenarios: (A) when the generative search

space is manually defined but a VAE is used to compare artefacts (e. g. dis-

tance/similarity estimation), and (B) when only data is available and its

underlyinggenerativepatterns areunknownor toodifficult to extractmanu-

ally and thus have to be approximated by latent variables to obtain a search-

able generative space.

Our studymakes the following contributions:

1. In the context of the first scenario (A), we give informed recommend-

ations of how to use a VAE to its full capacity in combination with

a QD search algorithm.We test whether the latent space is suitable

for evaluating artefact similarity and also for searching artefacts or

whether the two steps should be performed in separate spaces.

2. For both scenarios (A and B), we give evidence for the limitations of

VAEs in their ability to represent and generate examples beyond the

original training data and, as a result, the diversity of their output.

In the following, we describe techniques for latent space search for artefact

generation, quality diversity (QD) search in general and VE in particular.

We then lay out our methodology and study setup, including details on the
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shape generation task, the generative system and the evaluation procedure.

We then present four benchmark tasks in two different experiments.We

follow with a discussion of our findings and close with conclusions.

4.2 ARTEFACT GENERATION VIA LATENT SPACE SEARCH

Generative machine learning algorithmsmodel a given data distribution

to reliably synthesise data examples with high fidelity. For this, an artificial

neural network is conventionally used to map from a latent space, typically

a simple and well-understood distribution, to the complex feature space of

the data domain. The latent variables ideally encode the factors of variation

that underlie the processwhich generated thedata. Such latent spaces canbe

leveraged for artefact production in several ways.While random sampling

is the simplest and computationally inexpensive approach, it does not allow

for any control over the output.When specific criteria exist, searching the

latent space of a generativemodel can bemore effective. For this, there exist

several search strategies, most of which are designed to optimise single solu-

tions, focusing on quality only.While the goal of global optimisation is to

find a single global optimum in the parameter (or genotypic) space, multi-

modal optimisation (Deb et al., 2002; Mouret, 2011; Deb & Saha, 2012)

provides a set of (potentially only locally) optimal solutions. In contrast,

quality diversity (QD) algorithms typically operate in the feature space, com-

paring phenotypic representations, and aim to cover the entire search space

by finding the highest-performing solutions in all local neighbourhoods,

even if they are not of optimal fitness globally.

QD search approaches are particularly relevant for artistic and creative

applications,where thegoal isnotnecessarily tofinda singleoptimal artefact.

Given a variety of several different high-quality proposals, the human in the

loop canmake an informed selectionof artefacts for furtherdesign iterations.

For some applications, practitioners are therefore not interested in full

automation but use optimisation tools to assist in the design process. In this

context,QD has been shown to produce more diverse sets of artefacts than
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multi-criterion andmulti-modal optimisation techniques (Hagg, Preuss

et al., 2020; Hagg, 2021).

In this section, we describe the conceptual approach of quality diversity

(QD) search in general and the Voronoi Elites (VE) search algorithm used

in this work.We follow the conventional evolutionary terminology in the

context of artefact generation, where genotype (genomes or chromosomes) and

phenotype refer to the parametric and visual representations of an artefact,

respectively. The population of all candidate artefacts ismade up of individuals

that change over various optimisation steps. The archive is the collection of

selected artefacts. In multi-solution evolutionary search, the search space is

divided into niches for local competition.

4.2.1 QUALITY DIVERSITY

Just as other evolutionary computation methods, quality diversity (QD)

(Pugh et al., 2015; Cully &Demiris, 2018b) takes inspiration from natural

evolution and its dynamics of competition and adaptation. These dynam-

ics can be used to tackle complex optimisation problems. But instead of

promoting competition between all individuals in a population, QD for-

mulates the evolutionary process as a divergent search. In nature, not all

species competewith eachother for the same resources andmany can simply

co-exist.QD therefore proposes for individuals to compete locally within

niches of specialisation. This allows for the simultaneous optimisation and

diversification of artefacts.QD thus focuses both on quality and diversity.

QD search is performed in parameter space (Figure 4.1), but individu-

als are evaluated based on their phenotypic representation, i. e. artefacts.

Specific measures can be defined to determine the features of individual

artefacts, e. g. to capture some aspects of behaviour or morphology which

are important for a task. Examples of such features include the proportion

of time that each leg is in contact with the ground in a walking robot’s gait

(Cully et al., 2015), the turbulence in the airflow around an aerodynamic

shape or its surface area (Hagg,Wilde et al., 2020). An important decision
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Figure 4.1: Local competition in QD. Search is performed in parameter space. Can-
didate solutions are converted from their genetic into their phenotypic
representation, i. e. from parametric descriptors into artefacts. Candid-
ates compete locally in feature space and are only added to the archive
if they improve the quality score compared to their immediate neigh-
bourhood of individuals.

is the definition of local neighbourhoods, a process called niching. InMAP-

Elites (Mouret & Clune, 2015), it is common to divide the search space

into a fixed regular grid of niches. Competition between individuals only

takes place within the same niche, the local neighbourhood of artefacts.

An individual is added to the archive if it survives local competition. New

individuals are created by selecting surviving candidates from the archive

andmodifying their genome, either throughmutation, by adding small per-

turbations, or crossover with the genome of another individual.

4.2.2 VORONOI ELITES

In this work, we useVoronoi Elites (VE) (Hagg, Preuss et al., 2020), amodi-

fication of the MAP-Elites algorithm (Mouret & Clune, 2015). Elites is

the common term for high-performing individuals (candidate solutions in

a population). For the setting of our study, VE provides some advantages

over otherQD algorithms. InMAP-Elites, the search space is divided into

a fixed grid of niches, phenotypic sub-spaces for local competition.With a

growing number of phenotypic feature dimensions, this approach leads to

an exponential growth of niches. CVT-Elites (Vassiliades, Chatzilygeroudis

&Mouret, 2017) deals with this problem by pre-defining fixed niches using

aVoronoi tessellation of the search space.However, due to the fixed number

of individuals in an archive, both methods tend to reduce the variance of

the population in the first iterations. On the one hand, random initial indi-
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size: solution fitness new closest pair

Figure 4.2: Updating the Voronoi archive. The size of the dots indicates fitness,
new individuals are marked with a cross and pairs of closest individuals
are marked red. The VE approach allows for a fixed archive size, inde-
pendent of its dimensionality, making experiments more controllable.
In this example, the maximum number of niches is set to six. When
a new candidate individual is added to the archive, the pair of closest
individuals is compared. The worse of the two is removed from the
archive and the individual with higher fitness is kept in the archive. The
borders between niches drawn here are for visualisation only, to illus-
trate the range of influence of individuals and how they are changed by
archive updates.

viduals typically do not cover the entire search space. On the other hand,

competition is higher in niches with a large number of initial individuals,

leading to the early exclusion ofmany candidate solutions. In contrast, inVE

niches are not pre-defined, and any new individual is added to the archive

until a maximum number of niches is reached. Only then local competition

is initiated, and the phenotypically closest elites are compared, removing

the worst-performing individuals from the archive. VE is therefore more

effective in maximising the number of available individuals to be used as

training examples for the VAE.

The evolution of an VE archive is illustrated in Figure 4.2. Selection

pressure is applied based on artefact similarity. VE effectively minimises

the variation of distances between artefacts in an unbounded archive. The

total number of niches is fixed, independent of the number of search space

dimensions. As a result of local competition, the division of the search

spaces into niches may change from one iteration to the next. Tournament

selection is used to select individuals from the archive. New individuals are

created bymutation, drawn from a normal distribution.
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4.3 METHODOLOGY AND SETUP

This section outlines the details of our study’s subject domain (generation of

two-dimensional point-symmetric shapes), lists the general configurations

of theVAE andVE algorithm (specific settings for experiments can be found

in the experimental setups below) and explains how the twomethods are

combined to build two versions of a generative systemwhich we compare

in a principled way through a series of experiments.

4.3.1 SHAPE GENERATION TASK

Forour study,weuse a simple shape-generation task.Wedefine aparametric

design space of black-and-white two-dimensional shapes (Figure 4.3). This

allows us to define specific benchmarking tasks in our experimental setup

(Section 4.4). Shapes are generated by connecting eight control points

which can be freely placed in a Euclidean plane with a polar coordinate

system. Each control point is thus defined by two parameters: the radial

(dr) and angular coordinates (dθ). Following the standard evolutionary ter-

minology, these overall 16 parameters act as genes, encoding the properties

of the individuals. For evaluation, individuals need to be converted from

their genetic representation into their phenotypic representation. To form

a smooth outline, the points are connected by locally interpolating splines

(Catmull & Rom, 1974). A discretisation step renders this smooth shape

onto a square grid resulting in a bitmap of 64× 64 pixels.

4.3.2 EVALUATION AND FITNESS

For the evaluation of shapes in the evolutionary fitness criterion, we use

point symmetry. For our simple generative system, this objective is compu-

tationally inexpensive and easy to understand and interpret.

The symmetry error of an artefact is calculated in five steps. First, the

shape boundary in the bitmap image is determined as a collection of N
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Figure 4.3: Shape encoding, representation, conversion and evaluation: (a) 16
genes define the position of (b) eight control points with polar coordin-
ates in a Euclidean plane. (c) Smooth outlines are formed by locally
interpolated splines. (d) A shape is converted from its genetic into its
phenotypic representation through a discretisation step that renders
the smooth shape onto a square grid of 64 × 64 pixels, producing a
bitmap image representation. The quality of a shape is evaluated by
first (e) determining its boundary and then (f )measuring its symmetry
from the centre of mass.

pixels. Second, the coordinates of the boundary pixels are normalised to

the range [−1,+1] to remove any influence of the shape’s scale. Third, the

boundary’s centre of mass is determined to be used as the centre of point

symmetry. Fourth, we calculate the Euclidean distance between allM = N
2

pairs of pixels, that are opposite each other across the centre. Finally, we

calculate the overall symmetry error S as the sum of the distances of all

opposing pixel pairs. For a perfectly symmetric shape, this sum equals zero.

The fitness function thus F is calculated as follows:

F (x) =
1

1 + S(x)
S(x) =

M∑
i=1

‖xi − xi+M‖ (4.1)

4.3.3 GENERATIVE SYSTEM DESIGN

For the generation of two-dimensional point-symmetric black-and-white

shapes, we build a generative system where a VAE is trained from scratch

and its latent space is searchedwith theVoronoi Elites (VE) algorithm. This

generative system is similar to AutoVE (Hagg, Preuss et al., 2020), except

that it uses a VAE instead of a conventional auto-encoder. VAEs provide

several advantages: they distribute training examples more evenly in lat-

ent space, can learn disentangled latent dimensions and allow to generate
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Figure 4.4:We combine a VAE and VE into a generative system in two phases. First,
initialisation: (1) an initial set of genomes is generated and (2) conver-
ted into shape bitmaps which are used to (3) train a VAE. We compare
two initialisation scenarios: starting from scratch with random ini-
tialisation (R) and continuation (C ) where the system starts with a
pre-determined set of candidates, e. g. from a previous run. Second,
optimisation loop: (4) VE iteratively updates the archive of candidates.
We compare two setups of this loop: the VE performs search either in
parameter space (PS ) or in the VAE latent space (LS ).

new samples via interpolation. The full generative system, illustrated in

Figure 4.4, can be separated into two phases: (1) initialisation and (2) an

evolutionary optimisation loop.

At initialisation time, a set of genomes (parameter configurations) are

set randomly and converted into their phenotypic counterpart (bitmap

images). The VAE is trained until convergence on this bitmap data. The

learned latent space is then used in the following evolutionary process and

the model’s encoder and decoder networks serve as mapping functions

between the phenotypic bitmap representations and the model’s latent

representations and vice versa. We compare two initialisation scenarios:

starting from scratch with random initialisation (R) and continuation (C )

where the system starts with a pre-determined set of candidates, e. g. from

a previous run.

In the evolutionary optimisation loop, the VE algorithm iteratively up-

dates the archive of artefacts, increasing its diversity as well as the quality

of artefacts in individual niches through local competition. For this, two

candidates are compared to each other in the VAE’s low-dimensional lat-

ent representation space (artefact genome), which preserves semantically

meaningful artefact relations.
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For the central comparison of our study, we perform this optimisation

process in two different search spaces: (1) parameter space (the explicit

genome encoding) and (2) the VAE’s latent space (the learned represent-

ation). This way, we can evaluate the expressivity of the VAE latent space

and its capability to generate a diverse set of artefacts in comparison to the

full space of possibilities which is reflected by the 16 predefined genetic

parameters. The performance of the two approaches is measured in terms

of the diversity of the produced set (see the following Section 4.3.4). This

setup allows us to study the limitations of theVAE latent space and compare

it to the baseline diversity when searching for candidate artefacts over the

complete parametric search space.

VAE CONFIGURATION

Throughout this work, we employ VAEs with a beta-annealing loss term

(Burgess et al., 2017) that regularises the latent distribution to be aGaussian

with independent dimensions that capture linearly separable factors of

variation in the data.

L = E
qφ(z|x)

[
log pθ(x|z)

]
− β |DKL

(
qφ(z|x) ‖ p(z)

)
− γ |

β ≥ 1 γ ≥ 0

(4.2)

The scaling factor of the regularisation loss (second right-hand-side term)

was set to β = 4. The annealing factor γ controls the capacity of the lat-

ent space information bottleneck. Throughout the training, it increased

from 0 to 5. As the capacity is increased, the encoder learns to encode lat-

ent dimensions in the order of decreasing returns to the log-likelihood

over the data. Themost important information for reconstruction is thus

encoded first. This results in better reconstruction quality compared to

standard Beta-VAE (Higgins et al., 2016) while achieving similar levels of

disentanglement.

We use a model’s encoder as a mapping from phenotype bitmaps to ge-

netic latent representations. The encoder network is made up of four down-

scaling blocks, each consisting of a convolution layer (8, 16, 32 and 64 filters
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Figure 4.5: Architecture of a convolutional variational autoencoder.

respectively; kernel size 7 × 7; stride 2) followed by a ReLU activation

function. The set of blocks is followed by a final fully-connected layer. The

decoder network inverselymaps from the genetic latent space to phenotype

bitmaps through five transposed convolution layers, which have 64, 32,

16, 8 and 1 filter respectively, kernel size 7× 7 and stride 2, except for the

first layer which has a kernel size of 14 × 14. The last layer is responsible

for outputting the correct size (64 × 64 pixels). The weights of both net-

works are initialised with theGlorot scheme (Glorot&Bengio, 2010). Each

model was optimised with the Adam optimiser (Kingma& Ba, 2015) with

a learning rate µ = 0.001 and a batch size of 128.

VORONOI ELITES CONFIGURATION

We configure VE to start with an initial set of samples, generated from

a Sobol sequence (Sobol, 1967) in parameter space. Sobol sequences are

quasi-random and evenly space-filling. They decrease the variance in the

experiments but ensure that the sampling is similar to a uniform random

distribution and easily reproducible. In all experiments, VE runs for 1,024

generations with a population size of 32 individuals per generation, which

remains constant over the entire experiment.We perform randommuta-

tion, but no crossover of genes. To produce children via mutation for the

next generation, parents are randomly selected from the population. A

small random perturbation is then added to the parent’s genes. Mutation

vectors for perturbation are drawn from a normal distributionN (0, 0.01)

centred around zero with small scale.
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4.3.4 DIVERSITY MEASURE

As a measure of diversity, in this work, we use Pure Diversity (PD) (H.

Wang, Jin &Yao, 2017). Originally proposed as a measure of biological di-

versity (Solow&Polasky, 1994), it has since been applied tomulti-objective

optimisation (Ulrich, Bader & Thiele, 2010) and the evaluation of high-

dimensional phenotypes (Hagg, Preuss et al., 2020). PD computes the di-

versity of a set from the pairwise distances between its items and thus does

not depend on any additional information. In contrast, other measures of

diversity are often domain-dependent or require taking one of theQD al-

gorithms as a baseline (Hagg, Preuss et al., 2020). See Section 2.5 for an

overview of approaches to measuring diversity. Archive-dependent meas-

ures, like the QD-score, do not generalise well and, by splitting the search

space, introduce biases. We therefore rely on a distance-based diversity

measure that is calculated on the expressed shapes directly. Here, we thus

measure diversity directly, by calculating the PD of sets of bitmaps with bin-

ary pixel values, independent of their representation in parameter space or

the VAE latent space. The PD score of a setA is calculated recursively and is

equal to the maximum of the sum of its value on all but one of the members

and the minimum distance of that member to the set. The algorithm is

effectively a sub-graph search for the longest distance between subsets of

artefacts and their nearest neighbours.

PD(A) = max
a∈A

(
PD(A \ {a}) + d(a,A \ {a})

)
(4.3)

As a distancemeasure between an individual artefact and a collection,weuse

theHammingdistancewithL0.1-norm, recommended forhigh-dimensional

cases (H.Wang, Jin&Yao,2017), tofindtheminimumdissimilaritybetween

an individual item and the items in a setX .

d(y,X) = min
x∈X

L0.1(x, y) (4.4)
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4.4 EXPERIMENTS

It is commonly assumed that generativemodels, such asVAEs, have good in-

terpolation and reasonable extrapolation capabilities.Their latent spaces are

thus potentially appealing search spaces for the synthesis of novel artefacts.

Yet, to the best of our knowledge, there does not exist sufficient evidence

on the capabilities and limitations of learned latent spaces, in particular in

terms of output diversity when used asQD search spaces.We aim to alleviate

this gap and gain insight into two research questions:

1. How accurately can a VAE represent a variety of artefacts? That is to

say, how useful are its latent representations for artefact comparison?

2. Howwell can a VAE generate unseen shapes? Can their latent space

be used to reliably find novel artefacts?

Our experimental setup, as described in detail above, consists of a two-

dimensional shape generation task.We define a parametric encoding which

serves as a genetic representation of artefacts. As baseline performance, we

measure the output diversity of QD search in this parametric space (PS).

The capabilities of the VAE are evaluated by training a model on samples

covering the parametric space and performingQD search in its latent space.

For this, we define one baseline and four benchmark tasks with correspond-

ing datasets that we evaluate in two experiments (Figure 4.6). The datasets

in the first experiment (tasks b–d) consist of samples which have been

produced by varying two generating factors: scale and rotation. All exper-

iments were performed with five different base shapes. Below we present

the baseline dataset and four benchmark tasks.

(a) With a baseline dataset, the complete set of samples, we evaluate the

standard reconstruction error of the model to determine the baseline

quality of latent representations.

(b) In the recombination task, we leave out a subset of artefacts in the centre

of the ranges of values of both generating factors, leaving sufficient

examples at either end of the value ranges.
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Figure 4.6: (a) Generative factors used to create datasets in this work. (b–e) Four
tasks on which we compare the performance of latent space search with
parameter search, the red rectangles indicate artefacts that either have
been left out of a dataset (b, c, d) or are not available (e). (f ) All base
shapes used in this work. For illustration, visualisations here only show
100 of the 256 shapes.

(c) In the interpolation task, the left-out subset of artefacts covers the com-

plete range of one of the two generating factors, while some examples

remain at both ends of the other factor’s range of values.

(d) The extrapolation task consists of omitted samples at one end of values

of one factor of variation, which affects the complete range of the

other factor.

(e) The expansion task focuses on generating artefacts beyond the two

given factors of variation in the complete dataset.

We expect the VAE to perform reasonably well in recombining (b), interpol-

ating between (c) and extrapolating beyond (d) the available variations to

reproduce the samples missing from the training datasets. In the expansion

task (e), we expect the VAE latent space to only produce artefacts of low

fidelity.

4.4.1 EXPERIMENT 1: RECOMBINATION, INTERPOLATION

AND EXTRAPOLATION

We define five different base shapes (Figure 4.6, f ). For each base shape,

we build a dataset covering two factors of variation. By scaling the base

shape by a factor from 0.1 to 1 and rotating from 0 to 1
2π degrees in 16

steps each, we obtain a dataset of 256 total shapes. The complete dataset is

our baseline for comparison (Figure 4.6, a). For the other tasks, we create
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separatedatasetsbyomittinga subsetof examples fromthe completedataset

(Figure 4.6, b–e). We then train four separate VAE, one model per task

on the corresponding dataset: (a) baseline model, (b) recombination, (c)

interpolation, and (d) extrapolation. The models are trained for 3,000

epochs, after which we choose the models with the lowest validation error

(calculated on 10% of the input data).

Todeterminewhether theVAE can correctly reproduce, and thusproperly

represent, the given shape, wemeasure the models’ reconstruction errors.

For the baseline model, this is done over the complete dataset. For the task

models (b–d), the reconstruction error is calculated only on the held-out

examples. We define the reconstruction error as the Hamming distance

between an input bitmap and a generated bitmap, normalised by the total

number of pixels. As bitmap pixels are either black or white, i. e. 0 or 1,

Hamming distance is the appropriate choice of distance measure. A high

reconstruction error indicates that themodel cannot properly generate a

shape, and consequently that its latent space does not provide an adequate

search space forVE. Generating shapes to which there are no corresponding

training examples, the reconstruction errors of unseen shapes that can be

created with recombination and interpolation (b and c) are expected to be

lower than for extrapolation (d).

To determine the resolution of the models, wemeasure the distances in

the latent space between the training examples for the baseline model and

between the training and the unseen examples for the task models (b–d).

If the latter are of a similar order of magnitude as the first, the models can

distinguish unseen shapes from the training examples and each other. This

would indicate that themodel’s resolution is highenough toprovide features

of sufficient quality to perform a VE search.

This experiment was performed separately on each of the five base shapes

(Figure 4.6f ) and for three different sizes of the VAE latent space (4, 8, and

16 dimensions), as we assumed that the model would not able to perfectly

learn the two generating factors. The results are reported as statistics over

the total 15 runs.
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4.4.2 EXPERIMENT 2: EXPANSION

The last task, expansion (e), cannot be treated as per the previous experi-

ment, because we cannot properly define an a priori ground truth shape set

‘outside’ of latent space. Instead, we compare the two search spaces (para-

meter: PS, and latent: LS ) using the framework proposed in Figure 4.4.We

measure which one of the two search spaces produces the most diverse set

of artefacts using the PD score (Section 4.3.4). The experiment is split up

into two configurations: random initialisation (R) and continuation (C ).

In the first configuration (R), both of the compared search approaches

start from the same random initial set of genomes, which is common in

many optimisation problems.We increased the size of the archive to 512, as

this experiment poses a more difficult optimisation problem. As in the first

experiment (Section 4.4.1), the genomes are translated into bitmaps, which

serve as the training data for a VAEmodel. VE is then performed in both

search spaces to fill two separate archives of 512 shapes each. The resulting

shape sets are compared with respect to their diversity and average fitness,

which are often in conflict with each other. As the translation from genome

to bitmap always produces a contiguous shape, it is reasonable to expect

that a VAEwould learn to produce shapes, and not only random noise, even

when starting with a randomly generated set of examples.

Oftentimes, however, a generative system does not start with a random

set of data, but rather a pre-defined set of examples. For example, these can

be artefacts observed in the real world, manually designed or the output of

a previous search run.We thus define a second configuration, continuation

(C ), to test such a scenario. This way, we can compare whether the overall

output diversity improves when a VAE is trained on a set of high-quality

artefacts from a previous VE search process.We use the archive of shapes

produced by parameter search (PS) from the random configuration (R)

as training data for a new VAEmodel. Both PS and LS are then performed

again with this improvedmodel.
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Figure 4.7: Reconstruction errors (log scale) and latent distances (linear scale) for
tasks (a) through (d) over allmodels across all five base shapes and three
different latent space sizes (4, 8, 16dimensions).Boxplots showmedian
values, 25th and75thpercentiles andwhiskers indicatingminimumand
maximum values. All tested differences were statistically significant
(two-sample t-test, p < 0.01) and are marked with an asterisk.

It is expected that LS will interpolate between training samples, but not

be able to expand beyond the generative factors in the data, except through

modelling errors. Since PS is performed in the encoding’s parameter space,

this search approach should be able to produce a higher diversity of artefacts

in both configurationsR and C.

The number of latent dimensions of the VAE has been set to 8, 16 and 32

to analyse the influence of the degrees of freedom in latent space when it is

lower than, equal to, or higher than thenumber of parameters of the genome

representation. A higher number of degrees of freedom gives an advantage

to latent space search, a lower number would give it a disadvantage.When

using 16 latent dimensions, VE deals with the same dimensionality in PS

and LS. For this task, the number of filters in the VAE is quadrupled to give

the model a better chance at learning the higher number of variations.

This experiment has been repeated 10 times for each of the four config-

urations: (1) random initialisationR in PS, (2) continuation C in PS, (3)R

in LS and (4) C in LS. We report results as statistics over 10 repetitions for

each latent space size (Figure 4.10).
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Figure 4.8: VAE validation losses during training on 10% held-out validation data.
Curves showmedian values and the 10/90% confidence intervals.
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Figure 4.9: Visualisation of the VAE latent spaces (eight dimensions projected
down to two with t-SNE). Shapes in yellow represent training examples,
while blue ones are from the task’s hold-out set. All shapes were recon-
structed by the model. Black outlines show the ground truth shapes
and coloured fills the reconstructed shapes. Differences between the
outlines and fillings correspond to reconstruction errors.

4.5 RESULTS

For the first experiments, covering the recombination, interpolation and

extrapolation tasks, we report the reconstruction loss, KL loss and total β-

loss on the validation data, during training of the models (Figure 4.8). The

training does not need much more than 1,000 epochs until convergence.

We further report the reconstruction errors and latent distances between

examples for all tasks (Figure 4.7). The reconstruction error on the full

training dataset is lower than when reproducing the held-out recombina-

tion and interpolation examples. On average, 1 % of pixels (approximately

40 out of 4,096) were incorrectly reconstructed in the recombination and

interpolation tasks. As expected, the error in the extrapolation task is the

highest. All differences between the reconstruction error on the whole data-

set and the hold-out sets are statistically significant (two-sample t-test,

p < 0.01). The latent distances between the examples have similar distri-

butions across all tasks. Four exemplary latent spaces corresponding to the

different datasets and tasks are shown in Figure 4.9 from models with a

latent space size of eight dimensions. For visualisation, the artefact posi-

tions were projected to two dimensions using the dimensionality reduction

method t-SNE (van der Maaten & Hinton, 2008). The disentangled lat-
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Figure 4.10: Pure diversity (top) and total sum of fitness (bottom) of artefact sets
of parameter search (PS, green) and latent space search (LS, blue).
VAEswere separately trained with 8, 16 and 32 latent dimensions (sub-
plots). In every subplot, the two left-hand bars correspond to random
initialisation (R) and the two right-hand to the continuation (C ) con-
figurations of the experiments. Box plots showmedian values, 25th
and75thpercentiles andwhiskers indicatingminimumandmaximum
values. All tested differences were statistically significant (two-sample
t-test, p < 0.01) and are marked with an asterisk.

ent spaces accurately capture the factors of variation in the data, arranging

shapes by size and rotation. Shapes from the hold-out sets in the recombin-

ation and interpolation tasks (b and c) are correctly placed in a gap between

training examples according to their size and rotation. In comparison, in

the extrapolation task (d), hold-out shapes are not as neatly arranged and

show significant reconstruction errors. Detailed reconstruction errors are

shown in Figure 4.13.

For the expansion task in the second experiment, we compare the Pure

Diversity (PD) and total fitness of the generated artefact sets fromparameter

search (PS) and latent space search (LS) (Figure 4.10). We can observe

some interesting patterns:

1. The pure diversity of PS is significantly higher than LS across all

configurations. In turn, LS produces artefacts with higher levels of

fitness (point symmetry of shapes).

2. While diversity increases with bigger latent spaces, total fitness only

decreases for latent space search (LS) and remains relatively stable

for parameter search (PS ). A higher dimensional latent space makes

latent space searchmore difficult.
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3. Theperformance gapbetweenPS andLS decreases as the latent space

size increases andwhen continuing the search from an updatedmodel

(configuration C ). This observation provides us with two important

insights:

a) In LS, there is a trade-off between fitness and diversity which

can be controlled via the latent space size.

b) The continuation scenario provides amodel with amore diverse

training dataset, which leads to higher PD.

4. In all configurations, the tested differences between random initialisa-

tion (R) andcontinuation (C ) are statistically significant (two-sample

t-test, p < 0.01).

An example of the output shapes from PS and LS are shown in Figure 4.11

to illustrate the effective difference in pure diversity and point symmetry.

Analogous to our previous hypothesis (Section4.4.2),we interpret a shape’s

reconstruction error as its distance to themodel’s latent spacemanifold.We

visualise the expansion away fromthe latent surface of shapes foundbyPS in

Figure4.12. For this, thePS andLS artefact positions in the 16-dimensional

latent space are reduced to two dimensions using t-SNE.

4.6 DISCUSSION

For the interpretation of our results, we will discuss two separate relev-

ant aspects: in particular, (1) the use of learned latent spaces inQD search

approaches and, more generally, (2) the limitations of generative models

trained on raw data.

Themodels tested in our first experiment reliably reproduce previously

unseen shapes through recombination and interpolation. As expected, the

more difficult task, extrapolation beyond the given training examples, res-

ults in higher reconstruction errors. The latent distances of all four task

datasets have similar distributions. This suggests that, even when VAEs are

not able to fully reproduce the extrapolated shapes, they can still distinguish
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Parameter Search Latent Search
pure diversity: 54.1 pure diversity: 32.4

Figure 4.11: Searching the parameter space produces amore diverse set of artefacts
than searching the VAE latent space. In both cases, the same VAE latent
dimensions were used as niching dimensions of the QD algorithm.
Artefacts shown here (512 total) represent the complete VE archive
from a single run with one of the base shapes.

them from the training data and each other. That is to say, the position of

shapes in the latent space reflects their semantic relations, as visualised in

Figure 4.9.While shapes are not perfectly reconstructed in the extrapol-

ation task, they are nonetheless positioned in a well-structured relation

to others. Based on these observations, we recommend using a VAE latent

space as an approximate measure of similarity.

Our second experiment addresses the most difficult task, expansion bey-

ond the generative factors in the dataset. The ability of a VAE to find new

shapes is indirectly measured by comparing the pure diversity of the arte-

fact sets created by a search in parameter space and latent space (PS and

LS respectively). The diversity of PS is significantly higher than that of LS

(Figure 4.10). This holds as the number of latent dimensions is increased

beyond the number of degrees of freedom in the original encoding, and

when the VAE is updated after a first VE run (C ). Although a trade-off

between diversity and fitness is expected, it becomes less pronounced in the
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32-dimensional model. Given this evidence, we conclude that parameter

search finds a more diverse set of artefacts than latent search (Figure 4.11).

Ourfindings suggest, thatmanually-definedparametric encodings aremore

expressive than learned latent representations, and should therefore be pre-

ferred asQD search spaces, whenever available.

Our work, however, is limited to a simple generative task with a continu-

ous but range-restricted search space of 16 dimensions. It is possible that

with increasing complexity the benefits of search in parameter space, which

covers the full generative space, are outweighed by the curse of dimension-

ality. That is to say, parameter search is only useful in settings where it can

performwell. The authors of related work have come to the conflicting con-

clusion that search in the latent space of a GAN trained on simplified levels

from the video gameOvercooked yields more diverse output thanMAP-

Elites search on the manually-defined tile-based level encodings (Fontaine,

Hsu et al., 2021). The parametric search space differs from ours in two

important aspects. First, it is a combinatorial search problem. Second, its

size is much larger with 8 possible tile types in 15 × 10 = 150 tile loca-

tions.We hypothesise that the size of the search space in particular limits

the performance of parametric search in this setting.While the number of

parameters can grow infinitely and parametric search can quickly become

infeasible, a learned latent search space for the corresponding type of arte-

facts wouldmaintain a constant size and remain comparatively small. The

regularisation through compression, and potentially disentanglement, in

the generative model’s learnedmapping from feature to latent space, might

provide an important advantage to a search algorithm. The biggest ques-

tion for future work is thus, whether latent search spaces can outperform

parametric search, and at what point on the scale of increasing parametric

complexity this happens.We describe possible follow-up experiments in

Section 8.1.

We further acknowledge Limitationsthe following limitations to our work. The

present study is only meaningful to problem settings which allow for mul-

tiple solutions because they are most relevant to artistic and creative ap-

plications. Our findings are limited to multi-modal continuous domain
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latent space
reconstruction error
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PS
LS

Figure 4.12: Expansion in a 16-dimensional latent model (projected to two dimen-
sions with t-SNE).We interpret the reconstruction error of a shape as
its distance from the latent surface. Samples from parameter search
(PS, green) tend to extrapolate away from the latent distribution (LS,
blue).

optimisation, as we focus on latent space search. Extensions to other op-

timisation problems, e. g. combinatorial search, are not included in this

study and are left for future work. The presented problem setting, two-

dimensional shape generation, is kept simple for ease of visualisation and

interpretation. Some application domains are much more complex and

more work is needed to confirm whether our findings hold. Yet, our ap-

proach allows us to evaluate a generative model and quantify its limitations

through specific recombination, interpolation, extrapolation and expansion

tasks. This would not be as straightforward in more complex settings.

In summary, Summaryin this chapter, we have presented a principled study on

the capabilities and limitations of generative models, in particular when

using their learned latent spaces as a base for divergent search methods

like the VE algorithm. Our findings quantify the ability of VAEs to generate

samples through recombination, interpolation and extrapolation within

and expansion beyond the distribution of a given dataset. We compare

the diversity of generated artefacts when VE is run either in a parametric

encoding space or a learned latent space. Our findings show that the pure

diversity of artefact sets generated by latent space search is significantly

lower than that of parameter space search.

While we hypothesise, given the conflicting account from related work,

that these observations might not hold with the increasing complexity of

the parametric search space, we believe that the limitations ofVAEs continue

to hold at scale. In very high-dimensional domains for which we can collect
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b) recombination

c) interpolation

d) extrapolation

Figure 4.13: Five worst model reconstructions (blue) of left-out shapes (red) from
each task b–d (top to bottom rows). Overlaps (black) indicate pixels
that were correctly reconstructed. Reconstruction errors are shown as
red (not reconstructed) and blue pixels (erroneously generated)

largedatasets, like image andvideodata, latent space searchmight already af-

ford a vast space of possibilities— likely sufficient formost applications.Yet,

on a fundamental level, generativemodels remain limited. Due to their stat-

istical nature, generative models adopt, integrate and propagate any issues

that stem froma given dataset, be it in terms of biases, under-representation

or limitations of data coverage.We have to assume that generative models

are always limited by a given training dataset, which biases models towards

the most prominent features therein.

In this chapter, we presented evidence for the limitation of generative mod-

els through a principled study of the expressiveness of a VAE’s latent space.

In the following chapter, we argue that this shortcoming in the conventional

formulation of generative models is limiting to artistic applications and ef-
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forts of diversity, equity, and inclusion (DEI). We present diversity weights,

a method to increase the baseline output diversity of a generative model

throughmode balancing.



Chapter 5

INCREAS ING THE OUTPUT DIVERS ITY OF

GENERATIVE MODELS

In this chapter, we turn to improving generative modelling methods to-

wards higher model output diversity, addressing RQ 3.We first review the

conventional modelling objective, mode coverage, and contrast it with the

failure state mode collapse. We then propose mode balancing as an alternat-

ive objective for generative machine learning in artistic and creative ap-

plications. We present our approach to mode balancing, diversity weights:

a diversity-weighted sampling scheme for model training. The effect of

diversity-weighted training on model performance is demonstrated in a

proof-of-concept study on handwritten digits, which highlights the trade-

off between artefact diversity and typicality.

Wemotivate this work by bringing together the conclusions from previ-

ous chapters.We highlighted the common goal in relevant applications of

generative models to produce a diverse range of output (Chapter 3), in par-

ticular for artistic and creative work.We provided evidence for the limited

expressivity of generative models in terms of diversity (Chapter 4).We aim

to address this limitation by increasing the output diversity of generative

models, and in order to cater to specific artistic and creative applications.We

further connect this goal with efforts in diversity, equity, and inclusion (DEI)

as data biases often negatively affect under-represented groups.We identify

and address the specific data imbalance bias in unsupervised learning.

The work in this chapter was presented at ICCC 2023:

Berns, S., Colton, S., &Guckelsberger, C. (2023). TowardsMode Balancing

of GenerativeModels via DiversityWeights. Proceedings of the 14th Interna-

tional Conference on Computational Creativity (ICCC).

Code available at https://github.com/sebastianberns/diversity-weights.

https://github.com/sebastianberns/diversity-weights
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5.1 INTRODUCTION

Large image generation models (LIGMs), in particular as part of text-to-

image generation systems (Ramesh et al., 2021; Saharia et al., 2022), have

been widely adopted by visual artists to support their creative work in art

production, ideation, andvisualisation (Koet al., 2023;Vimpari et al., 2023).

While providing vast possibility spaces, large models like LIGMs, trained

on huge image datasets scraped from the internet, not only adopt but of-

ten exacerbate data biases, as observed in word embedding and captioning

models (Bolukbasi et al., 2016; Zhao et al., 2017; Hendricks et al., 2018).

The tendency to emphasise majority features and to primarily reproduce

the predominant types of data examples can be limiting for many CC applic-

ations that use machine learning-based generators (Loughran&O’Neill,

2017). Learnedmodels are often used to illuminate a possibility space and to

produce artefacts for further design iterations. Examples range from artistic

creativity, like the production of video game assets (Liapis, Yannakakis &

Togelius, 2014; Volz et al., 2018), to constrained creativity, e. g. industrial

design and architecture (Bradner, Iorio & Davis, 2014), and to scientific

creativity, such as drug discovery (Madani et al., 2023). Many of these and

similar applications would benefit from higher diversity in model output.

Given that novelty, which underlies diversity, is considered one of the essen-

tial aspects of creativity (Boden, 2004; Runco& Jaeger, 2012), we expect

that a stronger focus on diversity can also foster creativity (Stanley & Leh-

man, 2015).

Most common modelling techniques, however, follow a distribution-

fitting paradigm and do not accommodate the goal of higher diversity.

Within this paradigm, one of the primary generativemodelling objectives is

mode coverage (Zhong et al., 2019), i. e. the capability of a model to generate

all prominent types of examples present in a dataset.While a conventionally

trainedmodel can in principle produce many types of artefacts, it does not

do so reliably or evenly.Amodel’s probabilitymass is assigned in accordance

with the prevalence of a type of example or feature in a dataset. Common ex-
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amples or features have a higher likelihood under the model than rare ones.

As a consequence, samples with minority features are not only less likely to

be obtained by randomly sampling a model, but they are also of lower fidel-

ity, e. g. in terms of image quality. Related studies on Transformer-based

languagemodels (Kandpal,Wallace &Raffel, 2022; Razeghi et al., 2022)

have identified a “superlinear” relationship: while training examples with

multiple duplicates are generated “dramaticallymore frequently”, examples

that only appear once in the dataset are rarely reproduced by the model.

In this work, we argue for an adjustment of modelling techniques from

mode coverage tomode balancing to enrich CCwith higher output diversity.

Our approach allows us to train models that cover all types of training

examples and can generate them with even probability and fidelity. We

present a two-step training scheme designed to reliably increase output

diversity. Our technical contributions are:

• Diversity weights, a training scheme to increase a generative model’s

output diversity by taking into account the relative contribution of

individual training examples to overall diversity.

• Weighted Fréchet Inception Distance (wFID), an adaptation of the FID

measure to estimate the distance between amodel distribution and

a target distribution modified by weights over individual training

examples.

• Aproof-of-concept study,demonstrating the capabilityofourmethod

to increase diversity, examining the trade-off between artefact di-

versity and typicality.

In the following sections, we first introduce the objective ofmode balancing

and highlight its importance for CC based on existing frameworks and the-

ories. Then, we present our diversity weightsmethod in detail, as well as our

formulation ofWeighted FID. Following this, we present the experimental

setup and methodology of our study and evaluate its results. In the dis-

cussion section, we contribute to the debate on issues of DEI in generative

machine learningmore generally, and CC specifically, by explaining how our

method could be beneficial in addressing data imbalance bias.
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5.2 MODE BALANCING

Generative deep learningmodels now form an integral part of CC systems

(Berns et al., 2021). A lot of work on suchmodels is concerned withmode

coverage: tomatch adata distribution as closely as possible by accuratelymod-

elling all types of examples in a dataset (Figure 5.1). In the specific case of

GANs, great effort is put into preventingmode collapse (Arjovsky, Chintala &

Bottou, 2017), a training failure state inwhich amodel disregards important

modes and is only able to produce a few types of training examples. Mode

coverage is captured formally in common evaluationmeasures such as FID

and PR. Crucially, this is always done in reference to the training set statistics

or datamanifold. In this context, diversity is often arguablymisused to refer

to mode coverage.While mode coverage describes the fraction of modes in

a dataset that are represented by a model, the diversity of a model’s output,

if understood more generally and intuitively, can theoretically be higher

than that of the dataset.

Mode coverage is conceptually similar to the notion of typicality (Ritchie,

2007). Defined as the extent to which a produced output is “an example of

the artefact class in question”, a model which only generates outputs with

high typicality, if sampled at random, has to provide themost support to

those training set examples with the highest density of features character-

istic of that artefact, i. e. to maximise mode coverage. Crucially, sampling

from themodel would resemble going along themost well-trodden paths

in the possibility space defined by the dataset and, as Ritchie (2007) already

suggests, counteract novelty as a core component of creativity (Boden,

2004; Runco& Jaeger, 2012).

Crucially, mode balancing breaks with the convention of viewing the

dataset as ‘ground truth’. Instead, we consider the dataset to provide useful

domain information and the characteristics of typical examples (Ritchie,

2007). But a data distribution does not have to bematched exactly. Particu-

larly in artistic applications, creators often strive to actively diverge from the

typical examples in a dataset (Berns &Colton, 2020; Broad et al., 2021). To
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Mode Collapse Mode Coverage Mode Balancing

Data
Model

Figure 5.1:Mode collapse: themodel does not cover allmodes in thedata distribution.
Mode coverage: the data distribution’s modes are modelled as closely
as possible w.r.t. their likelihood.Mode balancing : the model covers all
modes but with equal likelihood.

stay with our metaphor, borrowed fromVeale, Cardoso and Pérez y Pérez

(2019),mode balancing allows us to walk more along the less trodden paths

and thus especially support exploratory and transformational creativity

(Boden, 2004; Stanley & Lehman, 2015). In contrast to the mode cover-

age paradigm, in mode balancing, diversity is measured independently of

the training data distribution. In the theoretical case of a balanced dataset

of absolutely dissimilar examples, i. e. multiple equally likely modes, our

method would assign uniform weights to all examples and thus be identical

to standard training schemes with random sampling.

5.3 THE VENDI SCORE

We adopt the Vendi Score (VS) as ameasure of diversity to evaluate datasets

and compare model performance (Friedman & Dieng, 2023). Here, we

first describe its general form and then introduce its probability-weighted

formulation which we employ in our work.

Given a set of artefacts {x1, x2, . . . , xN |xi ∈ X}, the VS is defined as the

exponential of the Shannon entropy of the eigenvalues of the normalised

pairwise similarity matrix over all artefacts:

VS(K) = exp
(
−

N∑
i=1

λi logλi

)
(5.1)

WhereK is a positive semi-definite similarity matrix (N × N) between

pairs of artefacts such thatKii = 1, and λ1, λ2, . . . , λN are the eigenvalues
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of the normalised similarity matrixK/N . The eigenvalues can be obtained

via the eigendecompositionK/N = QΛQ−1 as the diagonal elements of the

diagonal matrix λi = Λii.

The similarity matrixK is obtained by computing pairwise distances

over all artefacts with a similarity function k : X × X → R. While the

next Chapter 6 covers human-aligned similarity estimation, in the present

chapter we obtain pairwise similarities differently for two reasons. First, the

work presented here (Berns, Colton&Guckelsberger, 2023) predates the

work on similarity estimation (Berns et al., 2024). Second, due to the dif-

ference in the generative domains of the two works: our study on similarity

estimation was performed with tile-based video game levels, whereas the

present work focuses on image generation, in particular the synthesis of

hand-written digits.

Exponential entropy, also known as perplexity, can be used to measure

howwell a probability model predicts a sample. Low perplexity indicates

good prediction performance. Consequently, the more diverse a sample,

the more difficult its prediction, the higher the perplexity and its VS. This

can be shown with a simple coin flip example. A coin has two sides, thus

allowing for one out of two outcomes: heads or tails. Typically, we deal with

fair coins such that both outcomes have equal probability: 1/2. In this case

perplexity is 2, equal to the number of possible outcomes. This is extendable

toN-sided dice, where its perplexity is equal toN if all sides are equally likely.

Outcomes that are sampled from a uniform probability distribution are

the most difficult to predict, consequently both entropy and perplexity

are maximised. If any of the outcomes has higher probability, entropy and

perplexity decrease.VS, in this sense, can be considered an effective number,

as it quantifies the number of absolutely dissimilar examples in a dataset.

5.3.1 PROBABILITY-WEIGHTED VENDI SCORE

For our work, we use the probability-weighted formulation of the VS to

define a probability distribution p over all artefacts. Here, the similarity
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matrix is normalised by the probability distribution instead of the number

of artefacts:Kp = diag(√p)Kdiag(√p). The VS is then calculated as pre-

viously defined from the eigenvalues of the probability-weighted similarity

matrix (Equation 5.1).

We employ this probability-weighted formulation to determine the con-

tribution of each artefact to overall diversity (Section 5.4).While a dataset

may contain many artefacts, its diversity is low if the artefacts are similar to

each other. Diversity can be increased by composing a dataset of as many

artefacts as possible that are as dissimilar from each other as possible. There

is thus an inverse relationship between the relative abundance of a type of

artefacts in a dataset and its contribution to diversity. The more similar

artefacts there are, the less each of them adds to the overall diversity.We

illustrate this relationship with an example in the following section.

5.3.2 ILLUSTRATIVE EXAMPLE

The probability distribution p represents the relative abundances of indi-

vidual artefacts in a dataset. Instead of repeating identical artefacts in a set,

their prevalence can be expressed with higher probability. For illustration,

we present an example of four artefacts, of which three are absolutely similar

to each other and one is absolutely dissimilar to all others. All have equal

probability.

Ka =

(
1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

)
, pa =

(
0.25
0.25
0.25
0.25

)
(5.2)

The same information can be reduced to two absolutely dissimilar artefacts

and the corresponding probabilities pb.

Kb = ( 1 0
0 1 ), pb = ( 0.250.75 ) (5.3)

Both representations yield the same VS, which reflects the imbalanced set

of two absolutely dissimilar artefacts. VS(Ka
p) = VS(K

b
p) = 1.755 . . .



INCREASING THE OUTPUT DIVERSITY OF GENERATIVE MODELS 125

The imbalance in our example set negatively affects its diversity. If all

items in the set aregivenequal importance, oneartefact isunder-represented.

Instead, each of the two absolutely dissimilar artefacts in the set should thus

be assigned equal weight p = 0.5. In the case of repetitions, this weight has

to be divided across the repeated artefacts.

Kc =

(
1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

)
, pc =

(
0.5

0.166...
0.166...
0.166...

)
(5.4)

This maximises VS to reflect the effective number of absolutely dissimilar

artefacts VS(Kc
p) = 2.

5.4 DIVERSITY WEIGHTS

If artefacts in a set are repeated, i. e. their relative abundance is increased,

their individual contribution to the overall diversity of the set decreases.Yet,

with uniformweighting, all artefacts contribute to the model distribution

equally (Equation 5.2). Instead, we aim to adjust the weight of individual

artefacts in a set in accordance with their contribution to overall diversity.

We formulate an optimisation problem to find the optimal weight for

each artefact in a set, such that its diversity, asmeasured byVS, ismaximised.

max VS(Kp) = max exp
(
−

n∑
λi logλi

)
(5.5)

s.t. 0 ≤ pi ≤ 1
n∑

pi = 1

where p = (pi, . . . , pn), pi ∈ R[0,1]

K ∈ Rn×n, Kii = 1

Kp = diag(
√
p)Kdiag(

√
p) = QΛQ−1

λ = diag(Λ) = (λ1, . . . , λn)

5.4.1 WEIGHTED SAMPLING

Conventionally, training examples are drawn from a dataset with uniform

probability. In our method, examples are instead chosen according to their
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Algorithm 1Vendi Score DiversityWeight Optimisation
Input: Pairwise similarity matrixK overN artefacts
Parameter: Loss term balance γ, num iterations I , learning rate α, Adam
hyperparams β1, β2
1: Initialisew = (w1, . . . , wN ), wherewi = 1
2: for i = 0 to I do
3: p← w/

∑
wi

4: g ← −∇p γVS(K,p)− (γ − 1)H(p)
5: w← Adam(w, g, α, β1, β2)
6: end for
Output: Weight vectorw

contribution to an unknown target distribution. The weight of training

examples is determined by their individual contribution to the overall data-

set diversity as quantified by the optimised probability distribution p (see

example above, Section 5.3.2).We aim to increase the output diversity of a

model. For this, during model training, we replace the basic data sampling

operation by a diversity-weighted sampling scheme.

5.4.2 OPTIMISATION ALGORITHM

Wecompute an approximate solution to the optimisation problemvia gradi-

ent descent (Algorithm 1). The objective function consists of two terms: a

diversity loss and an entropy loss. The diversity loss is defined as the negat-

ive probability-weightedVSof the collectionof artefacts, given the similarity

matrix between artefacts and the corresponding probability distribution

over artefacts (Section 5.3.1). Instead of optimising the artefact probabilities

directly, we optimise aweight vectorw. The probability vectorp is obtained

by dividing thew by the sum of its values, which guarantees the second

axiom.To satisfy the first axiom,we implement a fully differentiable version

ofVS in log space.Optimising in log space enforcesweights above zero, since

the logarithm logx is only defined for x > 0 and tends to negative infinity

asx approaches zero.However, if theweights have noupper limit, values can

grow unbounded. A heavy-tailed weight distribution negatively affects the

diversity-weighted sampling step of ourmethod during training, as batches

can become saturatedwith the highest-weighted training examples, causing
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overfitting.We therefore add an entropy loss termH(p) = −
∑

pi log(pi)

to bemaximised in conjunctionwith the diversity loss. The entropy loss acts

as a regularisation term over the weight vector, such that its distribution is

kept as close to uniform as possible. The emphasis on the two loss terms is

balanced by the hyperparameter γ ∈ [0, 1].

L = − γVS(K,p)− (γ − 1)H(p), p =
w

||w||1
(5.6)

Given a normalised datamatrixX where rows are examples and columns are

features, we obtain the similarity matrixK by computing the Grammatrix

K = X ·XT. The weight vectorw is initialised with uniform weightswi =

log(1) = 0. The probability vector p is obtained by dividing the weight

vectorw by the sum of its values.We choose the Adam optimiser (Kingma

&Ba, 2015) with default hyper-parameters β1 = 0.9 and β2 = 0.999.We

experimentally determine the best initial learning rateα = 0.1with a decay

every 5 iterations by a factor of 0.99. An implementation of the optimisation

algorithm is available at:

https://github.com/sebastianberns/diversity-weights

5.4.3 WEIGHTED FID

The performance of generativemodels, in particular that of implicit models

like GANs, is conventionally evaluated with the FID (Heusel et al., 2017).

Raw pixel images are embedded into a representation space, typically of an

artificial neural network. Assumingmulti-variate normality of the embed-

dings, FID then estimates the distance between the model distribution and

the data distributions from their sample means and covariance matrices.

In our proposedmethod, however, the learned distribution is modelled

on a weighted version of the dataset. Moreover, referring to the standard

statistics of the original dataset is no longer applicable, as the weighted

sampling scheme changes the target distribution.We therefore adjust the

measure such that it becomes the Weighted Fréchet Inception Distance

(wFID), where the standardmean and covariances to calculate the dataset

https://github.com/sebastianberns/diversity-weights
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statistics are substituted by the weighted sample mean x̄ and the weighted

sample covariance matrixC.

x̄ =
1∑
wi

(∑
wi xi

)
C =

1∑
wi

(∑
wi(xi − x̄)T(xi − x̄)

) (5.7)

Note that the statistics of the model distribution need to be calculated

without weights as the model should have learned the diversity-weighted

target distribution.

5.5 PROOF-OF-CONCEPT STUDY ON HAND-WRITTEN DIGITS

We show the effect of the proposedmethod in an illustrative study on pairs

of handwritten digits (Lecun et al., 1998; LeCun, Cortes & Burges, 2010).

While artistically not particularly challenging, digit pairs have several be-

nefits over other exemplary datasets. First, the pairings of digits create a

controlled setting with two known types of artefacts. Second, hand-written

digits present a simple modelling task, in which the quality and diversity

of a model’s output is easy to visually assess. And third, generating digits

is fairly uncontroversial. While, for example, generating human faces is

more relevant for the subject of diversity, it is also a highly complex and

potentially emotive domain.

5.5.1 METHODOLOGY

For individual pairs of digits,wequantitatively andqualitatively evaluate the

results of GAN training with diversity weights and compare it against stand-

ard training. Experiments are repeated five times with different random

seeds.

Digit Pairs From the ten classes of the MNIST training set, we select

three digit pairs: 0-1, 3-8, and 4-9, which represent examples of similar and
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Table 5.1: Vendi Score (VS) of digit pair datasets (mean± std dev) with uniform
and diversity weights with different loss balances γ

VSweights
MNIST digit pairs

Pair 0-1 Pair 3-8 Pair 4-9

Uniformweights 1.77±0.003 1.96±0.004 2.07±0.004
DivW (γ = 0.6) 2.13±0.020 2.64±0.016 2.65±0.010
DivW (γ = 0.8) 2.79±0.052 3.45±0.027 3.38±0.025
DivW (γ = 1.0) 3.08±0.046 3.67±0.023 3.60±0.023

dissimilar pairings. For example, images of hand-written zeros and ones are

easy to distinguish, as they are either written as circles or straight lines. In

contrast, threes and eights are both composed of similar circular elements.

BalancedDatasets For each pair of digits, we create five balanced datasets

(with different random seeds) of 6,000 samples each. Each dataset consists

of 3,000samplesof eitherdigit, randomly selected fromtheMNISTtraining

set.We compute features by embedding all images using the CLIPViT-L/14

model. To optimise the corresponding diversity weights, we obtain pairwise

similarities between images by calculating the Grammatrix of features.

DiversityWeights For each dataset (5 random draws per digit pair), we

optimise the diversity weights for 100 iterations.We fine-tune the loss term

balance hyperparameter and determine its optimal value γ = 0.8, where

the weights converge to a stable distribution, while reaching a diversity

loss as close to the maximum as possible. Without the entropy loss term

(γ = 1.0) the weights yield the highest VS, but reach both very high and

very low values. Large differences in weight values negatively affect the

diversity-weighted sampling step of ourmethod during training, as batches

can become saturated with the highest-weighted training examples. In con-

trast, a bigger emphasis on the entropy loss (γ = 0.6) results in the weights

distribution being closer to uniform, but does not maximise diversity. The

hyperparameter γ provides control over the trade-off between diversity and

typicality, i. e. the extent to which a generated artefact is a typical training
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Figure 5.2: Digits ordered by diversity weight (index above with label in brackets,
weight below). First two rows: pair 0-1, twomiddle rows: pair 3-8, last
two rows: pair 4-9.Odd rows: twelve highestweighted, even row: twelve
lowest weighted.

example (Ritchie, 2007). The VS of the digit datasets whenmeasured with

and without diversity weights at different loss term balances are presented

in Table 5.1.

The resulting diversity weight for each of the 6,000 samples corresponds

to their individual contributions to the overall diversity of the dataset.We

give an overview of the highest and lowest weighted data samples in Fig-

ure 5.2. Low-weighted samples are prototypical examples of theMNIST

dataset: e. g. round zeros and simple straight ones, all of similar line width.

High-weighted samples show amuch greater diversity: thin and thick lines,

imperfect circles as zeros, ones with nose and foot line.

Training For each digit dataset, we compare two training schemes: 1)

a baseline model with the standard training scheme, and 2) three models

trained with our diversity weights (DivW) method and different loss term

balances (γ), where training examples are drawn according to the corres-

ponding diversity weights. The compared loss term balances are γ = 0.6,

γ = 0.8, and γ = 1.0. All models have identical architectures (Wasserstein
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Table 5.2: Architecture of generator and critic networks. Upsampling convolu-
tional layers (ConvTranspose) have kernel size 4×4, stride 2, padding 1,
dilation 1. Convolutional layers (Conv) have kernel size 5× 5, stride 2,
padding 2.

WGAN-GPGenerator

Layer Output Activation

Input z 64
Linear (FC) 2,048 ReLU
Reshape 4× 4× 128

ConvTranspose 8× 8× 64 ReLU
Cut 7× 7× 64

ConvTranspose 14× 14× 32 ReLU
ConvTranspose 28× 28× 1 Sigmoid

WGAN-GPCritic

Layer Output Activation

Input 28× 28× 1
Conv 14× 14× 32 LeakyReLU(0.2)
Conv 7× 7× 64 LeakyReLU(0.2)
Conv 4× 4× 128 LeakyReLU(0.2)
Reshape 2,048
Linear (FC) 1

GANwith gradient penalty; Gulrajani et al., 2017) and hyperparameters

and are optimised for 6,000 steps (see Tables 5.2 and 5.3 for details).

To allow our method to develop its full potential, we increase the batch

size to 6,000 samples, the size of the dataset. Training examples are drawn

according to diversity weights with replacement, i. e. the same example can

be included in a batchmore than once. Small batches in turn would be dom-

inated by the highest-weighted examples, causing overfitting and ultimately

mode collapse.

Evaluation We evaluate individual model performance on six measures,

using some commonmeasures for generative models, as well as measures

specifically relevant to our method. From each model, we obtain 6,000

random samples, the same size as the digit datasets. Inception Score (IS),

Fréchet Inception Distance (FID), and Precision–Recall (PR) with k-NN

parameter k = 3 quantify sample fidelity andmode coverage with respect

to the biased training data distribution.We employ ourWeighted Fréchet

Inception Distance (wFID) to account for the change in target distribu-

tion, induced by our method through diversity-weighted sampling (see

Section 5.4.3 for details).We follow the recommendations on anti-aliasing

re-scaling in image embedding models (Parmar, Zhang & Zhu, 2022).We
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Table 5.3: Training hyperparameters

Hyperparameter Value

Num steps 6,000
Num critic steps 5

Batch size 6,000

GPweight 10.0

LR generator 0.0001
LR critic 0.0001

Adam β1 0.5
Adam β2 0.9

use CLIPViT-L/14 (Radford et al., 2021) as the image embeddingmodel

in our feature extraction andmeasurement pipelines (except for IS), thus

evading the ImageNet data biases and unreliable measurements that do

not agree with human assessment (Kynkäänniemi et al., 2023). Note that,

while trained on amuch larger proprietary dataset and better suited as an

embedding model, CLIP still has its own biases. Diversity is estimated with

the Vendi Score (VS), for which we obtain pairwise similarities between

images by calculating the Grammatrix of features. Note that we follow the

recommendations by Barratt and Sharma (2018) and calculate IS over the

entire generated set of samples, removing the common split into subsets.

We also remove the exponential, such that the score becomes interpretable

in terms of mutual information.While not all reported scores are directly

comparable to other works, ourmeasurements are internally consistent and

reliable.

To quantify the effective increase in diversity, we calculate howmany ran-

dom samples from the standardmodels are required to reach the diversity

of a smaller random sample from the DivWmodels.Wemeasure diversity

with the VS. For this, we collect 6,000 random samples, the same size as the

digit datasets, from the DivW γ = 0.8models andmeasure their diversity.

We then collect increasingly larger sets of random samples from the stand-

ardmodels (6,000, 30,000, 60,000, 300,000 and 600,000) andmeasure

their diversity. These random sampling procedures are repeated with five
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different random seeds for each of the fivemodels of the respective training

methods (DivW and standardGANs). As a baseline, wemeasure the diversity

of the corresponding digit dataset.

5.5.2 RESULTS

An overview of our quantitative results is given in Figure 5.3. For three

pairs of digits, we compare our diversity weights (DivW) method with three

different loss term balances (γ) against a standard GAN. The balance of

loss terms determines the emphasis on a uniform distribution of weights

(lower γ) over higher diversity (higher γ). Accordingly, in the diversity

weight optimisation, a balance of γ = 1.0 corresponds to a full emphasis

on diversity and no entropy loss, while γ = 0.5 strikes an equal balance

between the two.

Our results agree on almost allmeasures across all three digit pairs, except

on ISwhich we discuss further below. As expected, the higher the emphasis

on the diversity loss, the higher (and better) the VS (Figure 5.3, top left).

This comes with a trade-off in sample fidelity andmode coverage, as quan-

tified by PR (Figure 5.3, middle and bottom left) and FID (Figure 5.3, top

right). However, when accounting for a weighted training dataset with our

Weighted FIDmeasure, the distance of our DivWmodel distribution to the

target distribution is notably lower than or at least on par with the standard

model (Figure 5.3, middle right).

Results on IS (Figure 5.3, bottom right) show the difficulty in distinguish-

ing different pairs of digits. For the pairing 0-1, the standardmodel and the

DivW γ = 0.6model score notably higher than the other two DivWmodels

(γ = 0.8 and γ = 1.0), while their scores are lower for the pairings 3-8 and

4-9. This suggests that, even for the standardmodel it is difficult to model

two similar digits like 3-8 and 4-9.

For the digit pair 4-9, the conventional performance measures (Preci-

sion, Recall and FID) exhibit high variances in the standard model. Note

the spread of the 95% confidence interval and the outliers in Figure 5.3.
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Figure 5.3: Performance comparison of ourmethod (DivW)with different loss term
balances (γ) against a standard GAN, trained on three digit pair data-
sets (blue circles: 0-1, green crosses: 3-8, red diamonds: 4-9) with six
measures: VS, PR and IS (higher is better), as well as standard FID and
weighted FID scores (lower is better).Means and 95% confidence inter-
vals over five random seeds. Individual datapoints showmeans over five
random sampling repetitions. The hyperparameter γ provides control
over the trade-off between diversity and typicality.

For models trained with our DivWmethod, the variance is greatly reduced,

leading to a more predictable model performance. In particular, when a

small loss term balance (γ) is chosen, the performance is comparable with

the standardmodel, however with lower variance.

For visual inspection and qualitative analysis, we provide random samples

in Figure 5.4 for all digit pairs andmodels.
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Standard DivW γ = 0.6 DivW γ = 0.8 DivW γ = 1.0

Digits 0-1

Digits 3-8

Digits 4-9

Figure 5.4: Random samples for all digit pairs (top row: 0-1, middle: 3-8, bottom:
4-9) from the standardmodels (left column) and ourDivWmodelswith
different loss balances (γ). The hyperparameter γ provides control over
the trade-off between diversity and typicality.

To quantify the effective increase in diversity, we compare the output

diversity of themodels trained with ourDivWmethod to the standardGANs

and the digit datasets as the baseline. Results for different digit pairs are

visualised in Figure 5.5. The diversity of the digit datasets is calculated

over the complete set of 6,000 training examples. The output diversity of

the standard and DivWmodels is calculated on sets of random samples of

different sizes (y-axis). The diversity of the digit dataset sets the baseline for

the level of diversity present in the training data. Neither the standardGANs

nor our DivWmethod can match the level of dataset diversity. However,

the output diversity of DivWmodels is considerably higher than that of the
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Figure 5.5: Comparison of the output diversity (y-axis) for different sample sizes
(x-axis) of DivWmodels and standard GANmodels against the diversity
of the training dataset. Means and standard deviations over scores were
computed for five random initialisations (dataset andmodels) and five
random samples (models) for each initialisation.

Digits 0-1 3-8 4-9

DivW (γ = 0.8) +17.43% +13.79% +4.79%

Table 5.4: Relative increase in output diversity (VS) of models trained with our
DivWmethod over standard GANs

standardmodels across all sample sizes. Furthermore, even when sampling

a very large amount of samples from the standard models, their output

diversity does not reach the diversity of a small set of samples from theDivW

models. This suggests that the DivW training scheme enables models to

capture modes from the dataset that standard GAN training is unable to

include natively.

As the value of the VS is an effective number, it can be interpreted as

the number of modes present in a sample. For the standard models, the

VS is around 2, corresponding to the two digits in the datasets. Table 5.4

shows the relative increase in output diversity of the DivWmodels over the

standardmodels as estimated by the VS.
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5.6 DISCUSSION

In recent years, research communities have become better aware of data

biases and their impact on society through the proliferation of data-driven

technologies. Likewise, CC researchers have highlighted its potential im-

plications for CC research and the importance of mitigation (Smith, 2017;

Loughran, 2022). Real-world datasets are a limited sample of a complex

world and should not be considered the ‘ground truth’, or as representing

the ‘true’ distribution. This practical impossibility further motivates our

proposal to shift away from the predominant mode coverage paradigm.

Ongoing debates have not yet resulted in a uniformly accepted way of

dealing with data bias in generative machine learningmore generally, and

CC specifically. One way to address data bias is to gather more or better

data. But this is not always possible or practical, since collecting, curating

and pre-processing new data is notoriously laborious, costly, or subject to

limited access.Anotherway is to instead adjust themethodology of learning

from data, such that a known data bias is mitigated. In this work, we focus

on the latter and propose the diversity-weighted sampling scheme to address

the imbalance of representation betweenmajority andminority features in

a dataset.

Diversityweights address the specific bias of data imbalance, particularly in

unsupervised learning. In contrast to supervised settings, where class labels

provide a clear categorisation of training examples, here common features

are often sharedbetweenvarious types of examples.Thismakes it difficult to

find an appropriate balance of training examples. Diversity weights give an

indicationofwhich type of examples are under-represented fromadiversity-

maximisation perspective. We draw a connection to issues of DEI as data

biases often negatively affect under-represented groups (Bolukbasi et al.,

2016; Zhao et al., 2017; Hendricks et al., 2018; Stock &Cisse, 2018).

Combining image generationmodels withmulti-modal embeddingmod-

els, like CLIP, enables complex text-to-image generative systems which can

be doubly affected by data bias through the use of two data-driven mod-
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els: the image generator and the image-text embedding. The discussion

on embedding models, and other methods that can guide the search for

artefacts, is beyond the scope of this chapter and thesis. Our work focuses

on the image generators powering these technologies. Yet, a conscious shift

tomode balancing, in particular for the training of the underlying generative

model, could support the mitigation of bias in text-to-image generation

models, complementing existing efforts in prompt engineering after train-

ing (Colton, 2022).

It is worth noting, that our method also introduces bias, particularly em-

phasising under-represented features in the dataset.We do this explicitly

and for a specific purpose. Other applications might differ in their perspect-

ive and objective and deem none or other biases less or more important.

Since a dataset cannot maintain its status of ‘ground truth’, the responsibil-

ity of reviewing and potentially mitigating data biases falls onto researchers

and practitioners.

Diversity–typicality
trade-off

A possible explanation for the diversity–typicality trade-off is given by

an information-theoretical viewon compression.The architecture of image-

generating artificial neural networks (ANNs) are typically set up as decoding

networks, to learn amapping froma latent representation space to a complex

feature space (e. g. colour images). The prior distribution of the latent space

is typically a standard normal or uniform distribution.Where possible, the

latent space is often of lower-dimensionality than the feature space. For

example, VAEs feature an encoding network and make use of an explicit

information bottleneck to learn a compressed latent encoding of a given

data distribution. In contrast, the input and output space of flow-based and

diffusion probabilistic models (DPMs) have the same dimensionality, due

to constraints of the modelling approach. Latent diffusionmodels (LDMs)

extend DPMs by an initial perceptual image encoding step.

In this context, a latent space is effectively a lower-dimensional com-

pression of data examples, that retains semantically meaningful relation-

ships between examples. However, an encoding network only has limited

resources and thus is a lossy compressor. Depending on the constraints

imposed by the information bottleneck (e. g. degrees of freedom, disen-



INCREASING THE OUTPUT DIVERSITY OF GENERATIVE MODELS 139

tanglement, regularisation), the encoding network can assignmore or less

latent information to high-level semantic image features (e. g. in the case of

human faces: skin tones, length and colour of hair). Since likelihood under

themodel is assigned in accordance to the frequency of types of examples

in a dataset, it is to be expected that small image details and differences are

ignored by the model, as they only appear in individual examples. With

an increasing compression rate between feature space and latent space, e. g.

due to a big difference in dimensionality, it becomes more difficult for a

model to include all variation in a dataset. As a result, a model will focus on

themost typical examples, while disregarding outliers. This phenomenon is

likely to occur in all models to some degree, as the world is too complex to be

efficiently represented with limited resources. Hence, a trade-off between

diversity and typicality is inevitable.

Fidelity–coverage
trade-off

Asimilar trade-off between sample fidelity andmode coverage appears in

the generative process of several other methods. A recent diffusionmodel

(Dhariwal &Nichol, 2021) introduces a hyper-parameter to control this

trade-off. The parameter scales the influence of gradients from a separate

classificationmodel at every diffusion step.The classifier guidance improves

sample fidelity at the cost of mode coverage. The truncation trick (Brock,

Donahue & Simonyan, 2019) for GANs consists of sampling the latent vec-

tor, input to the generator network, from a normal distribution of limited

value range, effectively tightening all values around the mean. As outlier

values are no longer permitted, generated samples gain in fidelity, but lose

in mode coverage. In most likelihood-basedmodels, the temperature para-

meter (Ackley, Hinton & Sejnowski, 1985) likewise allows for emphasis

on the modes of the training data distribution. In rejection sampling for

GANs (Azadi et al., 2019) and likelihood-based models (Razavi, van den

Oord&Vinyals, 2019) a classifier provides confidence scores of generated

samples which are used to reject samples that do not meet a given probabil-

ity threshold. Rejection sampling for VAEs (Bauer &Mnih, 2019) has been

extended by a learned acceptance function to improve the model’s prior

distribution. Classifier scores can be seen as implicit likelihood estimates.



Chapter 6

S IM ILAR ITY EST IMATION FOR THE

EVALUATION OF DIVERS ITY

In artificial intelligence, to automate processes as much as possible, human

evaluation is often substituted by approximate computational measures,

e. g. to quantify the similarity of two artefacts.When a measure substitutes

human evaluation of similarity, it is paramount to employ a similarity meas-

ure that accurately captures relevant criteria and relations between artefacts.

While there are many options for similarity measures, it is unclear how

they correlate to human perception of similarity. There exists no empirical

evidence that can support this decision.

Wealleviate this gap in twohumanparticipant studies, inwhichwe collect

human similarity judgements and interpretations of the relevant visual cri-

teriaof the judgements.We focusonvideogameapplications andprocedural

content generation (PCG), particularly tile-based video game levels. In a

quantitative study, we collect the similarity judgements from a large group

of participants (N = 456) and compare them against 7 similarity metrics

with a total of 12 configurations to determinewhich existingmetrics best ap-

proximate the human similarity perception of tile-based video game levels.

In addition, we perform a qualitative study in which four focus groups with

relevant experience (N = 4 × 2) provide their interpretation of the di-

mensions underlying human similarity judgements. Our findings inform

the selection of existing similarity metrics and highlight requirements for

designing newmetrics benefiting video game development and research.

Themethodology presented in this chapter addresses RQ4 and exempli-

fies how computational measures can be aligned with the human perception they are

supposed to substitute. In the wider context of this thesis, this is important for

a human-centric approach to increasing the output diversity of generative
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models. The performance of a generative machine learningmodel and the

qualities of a dataset are determined with specialised measures to compare

different approaches and track their progress. Many of these measures rely

on similarity estimation to quantify conventional performance indicators

like sample fidelity andmode coverage, as well as more complex concepts

such as novelty and diversity. In the Vendi Score (VS) family of diversity

measures for machine learning (Friedman&Dieng, 2023; Pasarkar &Di-

eng, 2024), selecting a similarity function is an important choice for two

reasons. First, to align automated evaluation and decision-making with

human criteria. And second, to ensure a measure captures domain-relevant

criteria. For example, images are typically compared on image semantics

rather than absolute pixel values. Similarly, the functional qualities of mo-

lecules might be more important for their similarity than their structure.

The work in this chapter was presented at CHI 2024:

Berns, S.,Volz,V.,Tokarchuk,L., Snodgrass, S.,&Guckelsberger,C. (2024).

Not All the Same: Understanding and Informing Similarity Estimation in

Tile-Based Video Games. Proceedings of the 2024CHI Conference onHuman

Factors in Computing Systems.

The collected study data and the implementation of our similaritymetric

test suite are available online:

https://github.com/sebastianberns/similarity-estimation-chi24.

https://github.com/sebastianberns/similarity-estimation-chi24
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6.1 INTRODUCTION

For video games to be enjoyable, game designers must anticipate how their

players will perceive, and consequently experience and react to, elements

in the game. This however proves challenging when considering elements

that only unfold dynamically at runtime, such as procedurally generated

content or the behaviour of non-player characters (NPCs). To constrain

such processes andmeet players’ expectations, designers can endow them

with computational metrics that approximate player perception, experi-

ence, and behaviour (Yannakakis &Togelius, 2011; Canossa & Smith, 2015;

Guckelsberger et al., 2017).

Here, we focus on an important family of suchmetrics to assess players’

perception of visual similarity. Metrics of similarity are an integral part of

many game AI applications such as procedural content generation (PCG),

which we use as a motivating case. For example, procedural content genera-

tion via machine learning (PCGML) (Summerville et al., 2018) approaches

rely on similarity metrics to generate artefacts such as game levels that re-

semble existing samples, or that are sufficiently distinct from previously

played levels. In contrast to this runtime use-case, similarity metrics have

also been used in design-time tools, e. g. to determine andmodify the ex-

pressive range of content that a generator with a specific configuration can

produce (Smith&Whitehead, 2010; Summerville, 2018; Cook et al., 2021).

There existmany similaritymetrics to choose from, ranging fromgeneral-

purposeones todata-drivenapproaches to expertmeasures custom-tailored

to a scenario. Typically, game designers and researchers select a similarity

metric based on conventions, personal preferences, basic assumptions, or

computational properties.

However, in both online and design-time PCGpractice, it is unclear if the

generated content is actually perceived as similar byplayers, i. e. howwell the

metric works as a surrogate of players’ perception (Volz et al., 2020;With-

ington&Tokarchuk, 2023). If the selectedmetric is misaligned, the con-

sequences can be detrimental to how a game is experienced, as exemplified
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by theThousandBowls of Oatmeal Problem, a term coined by Kate Compton to

describe the ‘common antipattern of generating a set of artefacts which are

technically distinct to the computer, but perceived by humans as uniform’

(Compton&Mateas, 2015). Given its strong resonance with game develop-

ment reality, it has quickly becomeoneof thebest-known idioms in thePCG

community (Rabii &Cook, 2023). A classic example of this phenomenon is

the lack of visual variety in the 18 quintillion possible planets ofNoMan’s Sky,

which aremathematically, but not perceptually, unique (Maiberg, 2016). In

this context, perceptual uniqueness has been promoted as the ‘real metric’

required. Its characterisation as a ‘darn tough’ one, highlights the import-

ance of the development and identification of visual similarity metrics that

approximate human perception as a core research challenge in games.

We hold that there exists no empirical data in the context of games to

adequately supportdesigners and researchers in selecting themost appropri-

ate similarity metric. At the same time, there exists a wide range of metrics

to choose from, including general-purpose metrics with no psychometric

claims, custom-made metrics from game AI and PCG, and models from

computer vision (CV) research.While some hold that writing metrics that

ought to approximate human perception in video games ‘is a difficult skill

that requires a deep understanding of the application domain’ (Rabii &

Cook, 2023), it is presently unclear whether such domain-specific metrics

truly perform best. Image embeddingmodels are of particular interest here.

While CV has long been active in developing surrogate models for the hu-

man similarity judgement for very specific domains (e. g. Wills et al., 2009;

Piovarči et al., 2018; Lagunas et al., 2019; Shi et al., 2021), we recently saw a

surge in the publication of more generic models (e. g. Radford et al., 2021;

S. Fu et al., 2023). This goes against the above claim for the necessity of

domain knowledge.Moreover, onemay assume that such CVmodels can-

not approximate the human similarity judgement well on the synthetic and

highly stylised levels of especially non-realistic video games, since they are

trained on, and optimised primarily for natural images. But we do not know

this for a fact.Moreover,metric development at present is based on designer

intuition, but we are in the dark about which visual features of game levels
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really determine players’ similarity judgement. This is of high significance

for the game industry and research, as the development of custommetrics

is time-intensive and hence costly. More generally, choosing a sub-optimal

metric could result in bad guidance at design time or unsatisfying player

experiences when used in-game.

With the work in this chapter, we contribute to a better understanding

of the human similarity judgement and its alignment with existing metrics

for a specific sensory modality in a well-constrained but very popular non-

realistic game genre.We address the more general RQ 4 and, by focusing

on people’s perception of visual similarity of tile-based video game levels,

further address twomore specific research questions.

RQ 4.1: Which existing metrics approximate the human similarity

perception of grid-based video game levels best?

RQ 4.2: What are the dimensions of this space that govern players’

similarity perception?

The second question serves as a direct response to the first, in that its

answer can serve as a stepping stone to inform the development of better

domain-specific metrics. Moreover, the gained insights can teach designers

how players perceive their assets, e. g. to inform amore intuitive creative

process at design time even if not relying on computational support tools.

All in all, the methodology of this chapter, from the collection of human

participant judgements to the labelling of, answers our initial RQ 4 and

exemplifies how computational measures can be aligned with the human perception

they are supposed to substitute.

We investigate these questions through two empirical studies.We collect

data on the human similarity perception in a 2 × 2 factorial study, covering

two very different titles (Candy Crush Saga; Legend of Zelda) in two visual

representations (level screenshots; abstract colour patterns). In a mixed

design, participants compared the similarity of level triplets for subsets of

each factor combination. In each triplet comparison task, they are presen-

ted with a reference stimulus and choose the most similar stimulus from

two options. Choices are forced, and participants cannot skip a task. Using
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a variant of multi-dimensional scaling (MDS), we build domain-specific

perceptual spaces, encoding similarity-relevant attributes for this specific

scenario.We compare a selection of PCG, general purpose and computer

vision metrics against these perceptual spaces, thus contributing to RQ 4.1.

This is complemented by our second study, in which we asked focus groups

with relevant experience to gather interpretations of the dimensions underly-

ing these perceptual spaces, supporting RQ 4.2 and thus fostering designer

insights and the future development of better metrics.

Our contributions are threefold:

1. A quantitative study comparing similarity judgements from parti-

cipants (N = 456) against a total of 12 configurations of 7 existing

metrics.

2. A qualitative interpretation study, in which four focus groups with

experience relevant to video game design, development, and research

(N = 4× 2) provide their interpretations of the dimensions underly-

ing the human similarity judgements in this domain.

3. A public dataset of human similarity judgements in tile-based video

game levels and implementation of the comparison test suite.1

Wemoreover critically reflect on the requirements of each group of metrics

and provide recommendations for scenarios when not the best but a runner-

upmetric might be preferred.

Similar to Rabii and Cook (2023), we thus set out to put intuitions and

internalised knowledge of game researchers and practitioners to the test

in the hope of strengthening applications and inspiring new research. Our

findings from (1) serve the game development and research communities by

informing recommendations for which existingmetrics should be preferred

in different scenarios, resting on a strong empirical basis. Moreover, our

findings from (2) inform the future development of more human-aligned

similarity metrics in the video games domain. The publicly available code

and data in (3) facilitate the evaluation of additional existing and newly de-

veloped similarity metrics, thus enabling game developers and researchers

1 https://github.com/sebastianberns/similarity-estimation-chi24

https://github.com/sebastianberns/similarity-estimation-chi24
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Figure 6.1: Triplet questions: two alternative forced choice (2AFC). Participants
are presented with a reference stimulus (top) and have to choose
between two options (bottom). Questions can not be skipped.

to easily build on our work. Focusing on levels of tile-based video games,

we relate to a particularly big and popular game genre, and arguably the

most common type of procedurally generated content.While using PCG

as a prominent application domain to motivate this research, an evaluation

of these metrics in concrete PCG algorithms is out of scope. Instead, we

focus on the comparison of existingmetrics for approximating the human

similarity perception in a way that is agnostic w.r.t. the specific game AI

application.

6.2 METHODOLOGY

6.2.1 DATA COLLECTION AND ANALYSIS

Our choices of data collection and analysis methods are well supported

by other work with similar methodologies. Human similarity ratings are

typically collected by presenting participants with triplet matching tasks

(two alternative forced choice, 2AFC, Figure 6.1) (Wills et al., 2009; Piovarči
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et al., 2018; Lagunas et al., 2019; Shi et al., 2021; S. Fu et al., 2023), which

is the most robust judgement type (Demiralp, Bernstein & Heer, 2014).

Collected triplet judgements are then converted into a perceptual space

throughmulti-dimensional scaling (MDS)or related ordination techniques

(see Section 6.2.3 for details). The resulting representation is often used

to label and thus identify the dimensions underlying the human similarity

judgement for the stimuli in question. Crucially, this is where most existing

analyses stop; we adopt this commonmethodology for our study, but take it

further by comparing the perceptual spaces derived fromhuman judgement

against those produced by computational metrics.

6.2.2 SIMILARITY METRICS FOR VIDEO GAMES

To calculate video game level similarity, game developers and researchers

leverage methods from three different groups of measures and distances:

1) artificial neural network-based image embeddings trained on datasets

of natural images for computer vision (CV), 2) domain-agnostic, general-

purpose distance metrics (General), and 3) manually-designedmeasures

based on expert knowledge, from the PCG literature (PCG). In Table 6.1,

we list and describe all embeddings, distances, andmeasures used asmetrics

for comparison in this study. Our focus in this selection lies on measures

specifically used in video games-related research and the game industry. In

the following, we provide further detail about our choice of metrics.

We define ameasure as a method to quantify the qualities of a video game

level and ametric as the comparison of such qualities between two levels.2

To build a working similarity metric, embeddings, distances, andmeasures

need to be transformed and compared.We outline here how this applies to

the aforementioned groups and our selection.

In computer vision (CV), it is common to use the embedding spaces of

artificial neural networks to compare the perceptual similarity of images (R.

2 Note that we do not follow the stricter mathematical definition of a “metric” here, but
instead use the termmore colloquially as a way of more easily differentiating the methods
that quantify qualities from those that compare them.
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Table 6.1: Selection of image embeddings, metrics and measures (with optional
configurations) compared in this work. Note that the image embeddings
andmeasures require additional transformations to be used as similarity
metrics (Section 6.2.2).

Name Group Input Output Description

CLIP (Radford et al.,
2021)

CV Image Vector Image embedding trained on a huge dataset of image-
text pairs scraped from the internet.

DreamSim (S. Fu et
al., 2023)

CV Image Vector Image embeddingfine-tunedonhuman similarity judge-
ments (two alternative forced choice).

Normalised Compres-
sion Distance (M. Li
et al., 2004)

General Tiles Scalar Using a compression algorithm (gzip), compares the
joint compression length of two levels to their individual
compression lengths.

Hamming Distance General Tiles Scalar Fraction of tiles that exactly match across two levels.

Tile Frequencies
(Summerville et al.,
2017)

PCG Tiles Distribution Relative frequencies of tile types appearing in a level.

Tile Patterns (Lucas
&Volz, 2019)

PCG Tiles Distribution Relative frequencies of tile patterns appearing in a level.
Configurations: size of patterns (2× 2, 3× 3, 4× 4).

Symmetry (Volz et al.,
2020)

PCG Tiles Scalar Fraction of tiles thatmatchwhenmirroring half of a level
across a corresponding axis (e. g. vertical symmetry: left
and right halves compared across the centre). Configur-
ations: axis of symmetry (Horizontal, Vertical, Diagonal
Forward, Diagonal Backward).

Zhang et al., 2018). Most recent embedding models (e. g. CLIP) have been

specifically designed for the evaluation of two inputs via cosine similarity

(Radford et al., 2021). We chose two state-of-the-art image embedding

models: CLIP (ViT-L/14@336px) for its ubiquitous use and DreamSim

(ensemble) for its specific alignment with human perception. Both take as

input one square colour image (either a level screenshot or the correspond-

ing colour pattern; see Section 6.3.1) and yield its corresponding embedding

vector. To evaluate the similarity of any pair of images, we calculate the co-

sine similarity between their embedding vectors.

While little PCG research focuses on similarity estimation specifically,

many works propose or use somemeasure to evaluate generative systems

and their output. For example, in expressive range analysis (Smith&White-

head, 2010) or to drive quality diversity search in video game asset produc-
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tion (Fontaine, Liu et al., 2021). Researchers draw from expert knowledge

to design specialisedmeasures that capture relevant qualities. In contrast

to CV embeddingmodels, PCGmeasures always take as input a tile-based

representation of a level (independent of experimental condition), where

individual tile types are encoded as ASCII characters. Tile Frequencies is

a popular baseline measure to characterise tile-based levels (Summerville

et al., 2017).While it disregards the location of tiles and thus does not fully

capture the composition of a level, the discrepancy of different tile types

appearing in two levels might be enough to approximate the overall visual

similarity between the two levels. This simple idea has been extended to

larger Tile Patterns (Lucas & Volz, 2019). While Tile Frequencies only

consider individual tiles (1× 1 patterns), Tile Patterns can be configured

to calculate the occurrences of any N × M pattern in a level. Both Tile

Frequencies and Tile Patterns take as input the tile-based representation of

one level and yield the probability distribution over the tiles or patterns that

appear in the level.We calculate the similarity between two levels by first

calculating the Jensen-Shannon distance between the two tile or pattern

distributions and then converting their distance into similarity by subtract-

ing it from 1.We further included symmetry measures because research on

patterns in Candy Crush Saga has shown that symmetric generated levels

are consideredmore similar to original game levels by human expert judges

(Volz et al., 2020).While symmetry by itself is probably not sufficient to

fully describe level similarity, we hypothesise that it might be an important

factor in the human perception of tile-based video game levels. Symmetry

measures take as input one level in a tile-based representation and yield a

scalar output that quantifies the level’s symmetry on a given axis (horizontal,

vertical, or either forward or backward diagonal). Two levels are compared

in terms of their similarity by calculating the absolute difference between

their symmetry scores.

As general and domain-agnostic metrics, we selectedHamming andNor-

malised Compression Distance (NCD).While these have been applied to

PCG (Rodriguez Torrado et al., 2020; Edwards, Jiang&Togelius, 2021),

they have not been specifically developed for video game applications. In-
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stead, they stem from information-theoretic approaches to measuring dis-

tancesbetweenstringsof text.HammingDistanceprovides a simplebaseline,

is easily interpretable and findsmany applications in video game research in

its more general form as edit distance (Alvarez et al., 2018; Todd et al., 2023).

NCD has been used as a metric for the structural similarity of video game

levels, as it encodes both tile frequencies and positions (Shaker et al., 2012;

Mariño, Reis &Lelis, 2015). Both general metrics take as input two levels in

the tile-based representation and yield the distance between them, which is

converted into their similarity by subtracting the distance from 1.

As motivated earlier , an intriguing question is how well state-of-the-

art computer visionmetrics, which were not developed specifically for use

in games, can compete with more conventional or custom-made metrics

already adopted in games. Crucially though, stimuli in studies on image

similarity more generally, e. g. photographs (Rogowitz et al., 1998), are

arguably far removed from the imagery that players experience in the tile-

based video games under consideration.We include DreamSim (S. Fu et

al., 2023) here both as a recent example to frame and compare our study

setup against, as well as a metric in our study (Section 6.3). For the devel-

opment of DreamSim, S. Fu et al. (2023) have curated a dataset of human

judgements over pairs of synthetic images, following the same 2AFC triplet

judgement task method described above and employed in our work. Cru-

cially, their image triplets were iteratively selected formaximumparticipant

agreement, effectively optimising for an easily solvable binary decision task.

In contrast, we take into account participant disagreement and thus gather

richer relational information between stimuli. Their work focuses on syn-

thesised natural images and thus compares conventional CVmetrics and

state-of-the-art learned, i. e. data-driven, embeddings.We instead focus on

metrics relevant to video game development and research but overlap with

their work in comparing CLIP (Radford et al., 2021) as a popular image

embedding. They finally use their dataset to fine-tune an ensemble model

for measuring image similarity, which we leave for future work.
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6.2.3 PERCEPTUAL EMBEDDING SPACES

Our work aims to compare various similarity metrics to the judgements

collected from our study participants. To facilitate this, we apply the con-

ventional methodology of constructing a perceptual space from the triplet

judgements that embeds all stimuli in a Euclidean space where distances

correspond to the perceived relations between triplets (Demiralp, Bernstein

&Heer, 2014; Piovarči et al., 2016; 2018).We thus understand the distance

in the Euclidean space to be the inverse of perceived similarity: the more

similar two stimuli are, the closer they will be positioned to each other in

the embedding.

More formally, in an exemplary triplet judgement task, letA be the refer-

ence stimulus, andB andC be the two options participants can choose from

(Figure 6.1). Suppose a participant decides that the reference A is more

similar to optionB than it is to optionC.We can describe this relation as

d(A,B) < d(A,C), where d is a distance metric in Euclidean space. Let us

call this a paired comparisonof the given tripletA,B,C. The embedding space

is built by finding the vectors corresponding to all stimuli~a,~b,~c, such that

‖~a−~b‖ < ‖~a− ~c‖. Naturally, this relationship should hold for all collected

triplet judgements, thus creating a set of constraints on the vectors. The

construction of the perceptual embedding is conventionally formulated as

a constrained optimisation problem.

A commonmethod to obtain such an embedding is multi-dimensional

scaling (MDS). A loss function (called strain) quantifies howwell the em-

bedding satisfies all constraints. Several versions ofMDSexist,most notably

metric and non-metric algorithms. However, most require a target distance

matrix in which the pairwise similarities between stimuli are expressed

as numerical distances. This is difficult to obtain from our study data, in

particular, because not all participants judged every triplet. Generalised

non-metric multi-dimensional scaling (GNMDS) (Agarwal et al., 2007)

instead reformulate the loss function to primarily depend on information

from the paired comparisons. Additional slack variables account for unsatis-
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Image Pattern

Candy Crush Saga

Legend of Zelda

Figure 6.2

fied constraints. The optimisation objective aims tominimise the amount of

slack. Yet, when there is high disagreement in the data between judgements

from individual participants, it becomes difficult to satisfy all constraints at

once. This results in large amounts of remaining slack.

In our work, we employ t-distributed stochastic triplet embedding (t-

STE) (van derMaaten &Weinberger, 2012), which responds better to the

naturally occurring noise in the judgement data by not trying to satisfy con-

straints that contradict the consensus. t-STE can thus deal best with two

important characteristics of our collected judgement data: 1) missing data

due to participants only judging a subset of triplets, and 2) high disagree-

ment between individual participants due to the difficulty of the triplet

judgement task.

6.3 STUDY 1: HUMAN VS. COMPUTATIONAL

SIMILARITY EVALUATION

To compare the human evaluation of similarity with computational met-

rics, we collect data on people’s evaluation of similarity in tile-based video

games. To this end, we employ a full 2×2 factorial designwith the first factor

defining the video gameTitle (ccs: Candy Crush Saga; loz: Legend of Zelda)

and the second the visual Representation of levels (img : level screenshots;

pat: an abstract colour tile pattern of the level sprite layout). This yields a
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total of four experimental conditions (Figure 6.2): ccs-img, ccs-pat, loz-img,

loz-pat.We choose twoRepresentations to cover different scenarios relevant

to the application of similarity metrics in video games and PCG. The img

representation provides direct insight into how people assess the similar-

ity between levels as they appear in the givenTitles. Through this, we aim

to inform the selection of similarity metrics for application in these and

other closely related video games.With the pat representation, we focus on

more abstract pattern representations of level layouts as they are used in the

level design process and bymany PCG algorithms. Our goal is to provide

practical recommendations for game designers, developers and researchers

for the application of similarity metrics at design time and in conjunction

with PCG and PCGML approaches.We are interested in answering RQ 4.1

individually for both of these scenarios (Which existing metrics approximate the

human similarity perception of grid-based video game levels best?). Note that there

is an important difference in the design of the similarity metrics. CV-based

metrics (CLIP and DreamSim) take image input and can be applied to any

image. In img conditions, they will be given level screenshots, whereas, in

pat conditions, they will receive the colour patterns. In contrast, all other

metrics receive levels in their tile-based representation and are given the

same information in all conditions.

With the stimuli in each condition, we prepared a collection of triplet

comparison tasks as two alternative forced choice (2AFC) questions. Given

a reference stimulus, participants are asked tomake a forced choice between

two stimuli, selecting the optionmost similar to the reference. This design

was shown to be the most robust data collection method and has been

recommended for assessing perceptual similarities (triplet ranking with match-

ing) (Demiralp, Bernstein &Heer, 2014). To prevent participant fatigue

but still assess a high number of stimuli, we employ amixed design where

each participant judges a subset of triplets from each condition. The study

was approved by the QueenMary Ethics of Research Committee.3

3 Reference number: QMERC20.565.DSEECS23.030
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(a) Condition: ccs-img

(b) Condition: ccs-pat

(c) Condition: loz-img

(d) Condition: loz-pat

Figure 6.3: Five random example stimuli for each condition. The first two rows
show levels from Candy Crush Saga and the last two levels from the
Legend of Zelda, in the image and pattern representation, respectively.
Each stimulus is randomly drawn from the respective subset identified
through our three-stage selection procedure.

6.3.1 MATERIALS

As stimuli, we first select a subset of level images from both video games

(Title). Video game levels in the img representation include some decorative

elements, e. g. different colour sprites for the same game objects in loz and

certain game objects, like candies, being represented by different sprites in

ccs. We hypothesise that the img representation, essentially content shown

in-game, evokes gameplay associations in the participants and obfuscates

some similarity-relevant visual patterns.

To test this hypothesis, we leverage an abstract colour pattern represent-

ation (pat) for eachTitle that relies on existingmappings from level object

to colour tile (Summerville et al., 2016 for loz and Volz et al., 2020 for ccs).
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The purpose of the pat representation is to remove potentially distracting

gameplay associations and emphasise the similarity-relevant characteristics

of levels, e. g. shapes and patterns. These types of colour tile patterns are

commonly used in PCG in research (Summerville et al., 2016; 2018; Sarkar

& Cooper, 2022; Bhaumik et al., 2023), as well as in practice (Grinblat &

Bucklew, 2010; Stålberg, Meredith & Kvale, 2018). In the following, we

describe how the conversion from img to pat representation is performed

andhow it differs between the twoTitles.However, to represent level objects,

we apply the same colour-blindness-safe colour palette (Wong, 2011) to

converted level representations from bothTitles. For Legend of Zelda (loz),

the colour tile mapping defined in the VGLC (Summerville et al., 2016) is

straightforward, as it simply maps level elements with different functional-

ity to distinct colour tiles (e. g. walls are different from floors are different

from enemies are different from doors, and thus assigned different colours).

In this abstraction, simplifications are limited to subsuming all enemies

into a single colour tile and ignoring the different colour palettes of the

various dungeon rooms. The colour tile mapping we use for Candy Crush

Saga (ccs) is informed by Volz et al. (2020) and was devised in collabora-

tion with the game’s creator, King. Instead of a direct one-to-one mapping

from each level object to a colour tile, this representation subsumes several

level objects with similar in-game behaviour. For example, objects that look

visually distinct (e. g. frosting and chocolate objects) but perform similar

game functions (blockers impedemoves, making gameplay more difficult)

are mapped to the same colour tile. This is done for several functional level

objects, such as blockers, candies, power pieces, and locks. Using the above img to

pat mappings, we represent everyTitle in eachRepresentation.

As datasets, we obtain loz levels from an open-source corpus of video

game levels (Summerville et al., 2016) and scrape ccs level screenshots from

a fan wiki4. Since our datasets (ccs: 2,792 levels, loz: 225 levels) were too

large for a triplet comparison study, we selected a subset of stimuli informed

by the expected amount of participants, a minimum of five comparisons

per triplet, and amaximum amount of 100 comparisons per participant. To

4 https://candycrush.fandom.com

https://candycrush.fandom.com
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select a subset representative of the overall variety in levels, we employed a

three-stage selection pipeline.We first obtained image embeddings from

an artificial neural network (CLIP ViT-14/L@336px Radford et al., 2021).

While using a metric assessed in the same study introduces a bias, the bias

is explicit and can be accounted for.We discuss this and alternatives we con-

sidered in the limitations Section 6.5.1.We then reduced the dimensionality

of the embeddings from 768 to 2 dimensions with t-SNE (van derMaaten

&Hinton, 2008), tomake the subsequent sampling step feasible. In our im-

plementation, t-SNEuses cosine similarity, which is themost appropriate to

calculate distances between CLIP embeddings. The origin of biases is thus

limited to the choice of embedding model. Finally, we used conditioned

Latin Hypercube Sampling (cLHS) (Minasny &McBratney, 2006) to find

a subset for which items are maximally distant from each other in the low-

dimensional embedding space. This is to ensure that 1) the samples cover a

large part of the space of possible levels and 2) that we do not inadvertently

draw conclusions from a non-representative subset of levels. Tomitigate

the influence of different tile colours in Legend of Zelda, we select levels

based on their greyscale versions.We selected 17 stimuli for each of the four

experimental conditions, yielding
(
17
1

)
×
(
16
2

)
= 2040 triplets per condition,

and 8160 triplet comparisons overall. Figure 6.3 shows a random selection

of five levels from all subsets, each corresponding to one condition.

Participants were asked optional demographic questions about their self-

described gender and age, and their experience with tile-based video games.

The surveys were implemented in Qualtrics. Given a list of stimuli, we

compute all triplet combinations and generate individual surveys for all

conditions for upload to Qualtrics.

6.3.2 PARTICIPANTS

We recruited 460 participants fromProlific to complete a 15-minute survey

paid at the equivalent of an hourly rate of £10. Funding was provided by

modl.ai.We excluded four participants who did not complete the full survey
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Table 6.2: Self-reported experience with tile-based video games of participants in
study 1 (blue) and study 2 (red). Participants selected one option in each
row, and percentages in each row add up to 100%.

I do not know this
type of game

I have heard of
this type of game

I have played this
type of game

I regularly play this
type of game

Tile-matching games (like
Candy Crush or Bejeweled)

1.80%— 14.7% 25% 59.1% 75% 24.4%—

Pacman orMs Pacman 2.90%— 16.5%— 73.6% 100% 7%—
Retro dungeon crawlers
(like Legend of Zelda)

29%— 42.0% 37.5% 23.5% 37.5% 5.50% 25%

Sokoban 75.8% 62.5% 15.6% 12.5% 7.70% 25% 0.9%—
Bomberman, Dyna Blaster,
or similar

48.1% 12.5% 20.7%— 29.9% 87.5% 1.3%—

and proceeded with the data from the remaining 456 participants. Out of

these, 53.51 % reported their gender as female, 43.64% as male, 1.75% iden-

tified as non-binary or third-gendered, none chose to self-describe, 0.44%

preferred not to respond, 0.44% left the question unanswered, and 0.22%

abandoned the survey before seeing the question. Themedian reported age

is 28. Our sample is thus considerably more representative w.r.t. identified

gender than common in studies related to video games.We summarise their

self-reported experience with tile-based video games in Table 6.2.

6.3.3 PROCEDURE

We informed our final study procedure based on a pilot, involving seven

stimuli in each condition. The goal of this pilot was to test the survey setup

and identify average response times, suitability of validation questions, and

baseline disagreement ratios on individual triplets. It was completed by 22

trusted participants from the authors’ respective industry and academic

institutions.

Our study follows the conventional methodology for collecting human

similarity ratings with two alternative forced choice (2AFC) questions, one of

the oldest methods of psychophysics (Fechner, 1860).We interchangeably
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refer to this as triplet comparisons. Given a reference stimulus, participants

are asked to make a forced choice between two stimuli, selecting the option

most similar to the reference. For our study, out of the 8160 total triplets

(Section 6.3.1), every participant was assigned a random subset of 25 from

each of the four experimental conditions. In addition to these 100 triplet

comparisons, participants were asked to judge three additional triplets as

validation questions in each condition.The order between andwithin condi-

tions was randomised for each participant, and colour patterns were shown

before level images to not prime participants’ perceptions. Participants

provided informed consent at the start of the survey and answered optional

questions on demographics and game experience after judging all triplets.

6.3.4 DATA ANALYSIS

To understand how the computational metrics correlate with our data on

the human perception of similarity, we perform two complementary quant-

itative data analyses. First, we quantify how well the computational metrics

can approximate the similarity matrices derived from our participant data.

For this, we construct a perceptual space for each condition which embeds

the stimuli in a low-dimensional Euclidean space. Second, we conduct pair-

wise comparisons between the judgements of individual humanparticipants

and the different computational metrics in an inter-rater agreement ana-

lysis. In addition, we provide a qualitative analysis of the features underlying

the human similarity judgements in our second study (Section 6.4). All

analyses are performed separately for each experimental condition.

6.3.4.1 PERCEPTUAL EMBEDDING OF TILE-BASED LEVEL SIM-

ILARITY

Todetermine the overall relationships between stimuli in termsof similarity,

aggregated over all human responses, we construct a perceptual space from

the collected triplet judgements, i. e. an embedding of stimuli in Euclidean

space (here also called perceptual embedding or embedding space). Participants
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Figure 6.4: Elbow plots for t-STE goodness of fit in all conditions.We choose 4 as
the number of dimensions (horizontal axis) for the embeddings based
on the evaluation of overall normalised errors (vertical axis).

were asked for their subjective perception of similarity. Choices were forced,

and participants did not have the option to skip a judgement task. It is nat-

ural that the triplet data is noisy and reflects some disagreement. Yet, this

provides important information about the similarity-relations of stimuli

and introduces constraints that need to be taken into account. For example,

if many participants agree that reference stimulusA is more similar to stim-

ulus optionB than the other optionC, in the embedding spaceA needs to

be positioned closer toB thanC. A perceptual embedding converts each

individual piece of relationship information into an aggregated positional

distance within the embedding while satisfying all constraints as best as

possible. As noted in Section 2.6, this inclusive approach also distinguishes

our work from related work.

We chose the embedding algorithm t-distributed stochastic triplet em-

bedding (t-STE) (van der Maaten & Weinberger, 2012) as it provides

several advantages over conventional multi-dimensional scaling (MDS)

methods, in particular, the handling of missing data and noisy data (for

background see Section 6.2.3). The former is necessary since not all parti-
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cipants judge all triplets, and the latter as our data shows a lot of disagree-

ment between participants. Elbow plots (Figure 6.4) indicate that four

dimensions can adequately encode themost relevant attributes across ex-

perimental conditions while providing a close-to-optimal fit for the data.

To quantify the suitability of the embedding for subsequent comparisons

with computational metrics, we analyse the robustness of the embedding to

random initialisation over 10 runs with different random seeds. The good-

ness of fit to the raw data, number of required iterations, and number of

constraints are almost identical across all runs.While the absolute positions

of triplets in the embedding depend on the initialisation of the embedding

and can differ significantly between random seeds, the variance of pairwise

similarities between the embedded stimuli is much lower across all con-

ditions (ccs-img : 0.0349, ccs-pat: 0.0464, loz-img : 0.0389, loz-pat: 0.0419;

variance over 10 runs with random initialisation), indicating overall robust-

ness of the resulting perceptual embeddings. For each condition, we select

the embedding with the best fit to the data from these 10 candidates. The

placements of the stimuli in the embedding dimensions are visualised in

Figures 6.11 to 6.14.

6.3.4.2 COMPARISON OF SIMILARITY MATRICES

To quantify the capabilities of the computational metrics to approximate

the human similarity judgements, we calculate the error between similarity

matrices derived from either source. The similaritymatrix for human judge-

ments is based on the previously described perceptual embeddings (Sec-

tion 6.3.4.1).We first compute the pairwise Euclidean distances between all

stimuli in the embedding, then normalise them by the maximum distance,

and finally convert normalised distances into similarities by subtracting

them from 1. The similarity matrix for a computational metric is construc-

ted from thepairwise similarity between stimuli computedby a givenmetric

as outlined andmotivated in Section 6.2.2. Two similaritymatrices are com-

pared by calculating the mean squared error. Results are summarised in

Section 6.3.5 and visualised in Figure 6.5.
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This comparative analysis allows us to quantify a metric’s prediction

error of the similarity-relation between two stimuli by comparing it to the

ground-truth human perception. However, this can only be done by way of

constructing a perceptual embedding space from the collected judgement

data, which itself only approximates the judgement data.We supplement

this first analysis with the following inter-rater agreement analysis, as it

allows for a more direct comparison to the judgement data given by our

participants, without requiring an intermediate approximation.

6.3.4.3 AGREEMENT BETWEEN PARTICIPANTS AND METRICS

We perform an inter-rater agreement analysis between human participants

and computational metrics. Cohen’s kappa (κ) is calculated for pairs of one

participant andonemetric as the two raters. For this,wefirst find the triplets

judged by a given participant and then determine the judgements of the

metric in question on the same triplet comparison tasks. This allows us to

perform a direct inter-rater agreement analysis. This process is repeated for

each combination of participant andmetric in each condition.We remind

the reader that in each triplet comparison, a participant is presented with

a reference stimulus A and chooses the most similar stimulus from two

options B and C. In standard inter-rater agreement terminology, we thus

deal with two raters each judging 25 items on a two-category nominal scale

(stimulus option B or C).We use Cohen’s kappa over agreement percent-

age, as it takes into account the possibility of chance agreements, which is

particularly important when dealing with only two categories. As not every

participant has judged all triplets, the statistics only reflect agreement on

each participant’s random subset of 25 triplets from each condition. For

each condition, we thus collect as many data points (kappas) as there are

participants who completed this section of the survey.

There exist some potential limitations in the interpretation of Cohen’s

kappa statistic on its own as the range of agreement and disagreement

between human participants and computational measures lacks a frame

of reference. Due to themixed design of our study, however, it is not pos-
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sible to calculate a baseline agreement between human raters. To tackle the

large number of triplets as efficiently as possible, each participant judges

only a subset of triplets from each condition. Most participants thus did

not rate the same triplets as any other participant. For each condition, the

overlap of rated triplets between two participants is zero in over 89% of the

cases, one in over 9% and two in over 1 %. Less than 1% of participants rated

three or more of the same triplets as any other participant. Since the vast

majority of participants did not rate the same triplets, there is not enough

information to calculate a meaningful statistic of the average agreement

between human participants for each condition. In any case, such a single

statistic would merely indicate the offset of Cohen’s kappa from its neutral

value of zero. A comparable, and potentially better adjustment of kappa’s

range of values is provided by the maximum value of kappa, as discussed

below.

We thus perform additional analyses of the inter-rater agreements to

support the interpretation of Cohen’s kappa (κ). Different scales have been

proposed to interpret the magnitude of kappa (e. g. poor, slight, fair, mod-

erate, substantial, and almost perfect; for different intervals of kappa). Yet,

choosing any such standard for the evaluation of the strength of agreement

is inevitably arbitrary.Moreover, a potential scale would have to be adjusted

to the maximum value kappa could attain for a given pair of ratings.While

kappa is theoretically upper-bounded by 1, in practice its maximum value

is oftenmuch lower, as kappa is highly sensitive to differences in allocation

and quantities. Considering a 2×2 contingency table,maximumagreement

is only possible if the marginal distributions are balanced.We assist the in-

terpretation of kappa by calculating themaximumvalue of kappa across our

pairwise comparisons (Sim&Wright, 2005), and visualise the difference

between individual kappa and their respective maximum values κmax − κ

(unachieved agreement, lower is better) as raincloud plots in Figure 6.8. This

provides a more realistic scale of comparison across metrics. We further

report two easily interpretable coefficients, appropriate for evaluation of

accuracy in prediction tasks, quantity disagreement and allocation disagree-

ment (Pontius &Millones, 2011), visualised in Figures 6.9 and 6.10.
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Figure 6.5: Mean squared errors (lower is better; horizontal axes) when comparing
the pairwise similarity matrices of different candidate metrics (ver-
tical axis) to those derived from the perceptual embeddings of the four
experimental conditions (subplots).

This collection of inter-rater agreement statistics complements the initial

comparison of similarity matrices, allowing for a direct comparison of a

metric’s binary prediction to a given participant’s judgements. However,

a binary choice between two stimuli options only gives a limited account

of the complex similarity-relations between stimuli. In contrast, the initial

comparison of similarity matrices can accommodate more fine-grained

relations, expressed as distances in a Euclidean space. For readability, we

present summarising box plots of the results for Cohen’s kappa here and

complete raincloud plots at the end of the chapter.

6.3.5 RESULTS

From the 456 participants, we collect a total of 11,400 judgements per con-

dition, resulting in an average of 5.6 judgements per triplet comparison.

We next present our results separately for each of the analysis steps out-

lined in Section 6.3.4. We give a summary of the results here, alongside

visualisations.
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In our main analysis, we compared the pairwise similarity matrices of dif-

ferent candidate metrics to those derived from the perceptual embeddings.

We report results as mean squared error, where a lower score indicates a

better approximation of the perceptual embeddings by a computational

metric (Figure 6.5). Overall, the two CV metrics, CLIP and DreamSim,

have the lowest errors across all experimental conditions. Looking at indi-

vidual conditions, DreamSim exhibits the best approximation performance

when using pattern-based representations (ccs-pat, loz-pat).While CLIP has

slightly lower error for image-based Legend of Zelda levels (loz-img), both

CV-basedmetrics are tied on image-basedCandyCrushSaga levels (ccs-img).

Tile frequencies are the overall third-best-performing approximate met-

ric across all experimental conditions. In fourth place, the general-purpose

metrics,NormalisedCompressionDistance (NCD) andHammingDistance

are tied in terms of overall error on Candy Crush Saga levels (ccs-img, ccs-

pat). However, for Legend of Zelda levels in both representations (loz-img,

loz-pat), Hamming Distance performs almost equally as well as Tile Fre-

quencies. Tile Patterns in various configurations (2× 2, 3× 3 and 4× 4) are

not good approximations for our collected human judgements.We observe

that a larger pattern size leads to a higher error.We provide an explanation

in the discussion (Section 6.5). Similarly, Symmetry metrics in all configur-

ations (horizontal, vertical, as well as diagonal forward and backward) yield

comparatively high overall errors.

In a supporting inter-rater agreement analysis, we calculated the agree-

ment between every pair of individual human participants and computa-

tional metric. A summarising box plot shows themedian agreements and

the interquartile ranges, where a higher score indicates higher agreement

(Figure 6.6; full raincloud plot available in Section 6.3.6). The agreements

between participants andmetrics, according to Cohen’s kappa, are overall

low tomoderate.We discuss this further in Section 6.5.1. Yet, the results are

nuanced enough to allow for interpretation and conclusions. As all metrics

exhibit roughly similar interquartile ranges, we will focus our description

on their median agreements with participant judgements. Out of all met-

rics, DreamSim shows the overall highest agreement. This is followed by
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Figure 6.6: Cohen’s kappa (higher is better): inter-rater agreement betweenhuman
participants and computational metrics over all experimental condi-
tions (subplots). Summaries here show box plots with median values
and the interquartile ranges. Full raincloud plots can be found in Sec-
tion 6.3.6.

CLIPwhich has the second-highest agreement inmost conditions. The only

exception is the pattern-based representation of Legend of Zelda levels (loz-

pat), where Tile Patterns (2× 2) and Tile Frequencies beat CLIP and share

a close second-highest agreement. Tile Frequencies has the third-highest

agreement for images of Legend of Zelda levels (loz-img), again closely fol-

lowed by Tile Patterns (2 × 2). For the pattern-based representation of

Candy Crush Saga levels (ccs-pat), Normalised Compression Distance has

the third-highest agreement, but only by a small margin when compared to

Tile Frequencies as well as Tile Patterns (2× 2) and (3× 3). Third-highest

agreement in Candy Crush Saga images (ccs-img) is shared by Tile Frequen-

cies and Tile Patterns (3× 3), though very closely followed by several other

metrics.

Weperformedstatistical significance testing (Vornhagen,Tyack&Mekler,

2020) on the agreement betweenmetrics and participant judgements (Co-

hen’s kappa). First, we test our basic assumption: (H1) there are significant

differences in the performance of metrics in individual conditions. For this,

we perform a one-way ANOVA separately for each condition.We further

seek to evaluate twoother hypotheses: (H2)DreamSim, from theCVgroup,
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performs better than Tile Frequencies, the next-best metric from a differ-

ent group, i. e. PCG expert metrics; (H3) metrics have a higher agreement

with participant judgements of the pattern-based representation of levels

than with judgements of level images. H2 is tested with a paired student’s

t-test of the two related samples within individual conditions: participant

agreement with DreamSim and with Tile Frequencies. H3 is tested with

a separate independent student’s t-test of eachmetric between individual

conditions. AsH3 entails multiple comparisons, we correct p-values with

the Benjamini-Hochberg procedure (Benjamini &Hochberg, 1995).We

perform these tests on Cohen’s kappa and not on the approximation errors,

as the tests require a minimum number of samples.

One-way ANOVAs, separately for each condition, confirm that there are

significant differences (all p < 0.01) in the agreement between participant

andmetrics (H1). Paired student’s t-tests in each condition confirm that

DreamSim has a significantly higher agreement (all p < 0.01) than Tile

Frequencies (H2). Independent student’s t-tests, followed by p-value cor-

rection, confirm that the best metrics from each group, DreamSim (CV),

Hamming Distance (General), and Tile Frequencies (PCG), have higher

agreement (all p < 0.01) for pattern-based representations than images

(H3). However, this does not hold for all metrics.

6.3.6 RAINCLOUD PLOTS

On the following pages, we present the full raincloud plots of Cohen’s

kappa from our inter-rater agreement analysis (Figure 6.7). To support our

main analysis, we report three additional statistics of inter-rater agreement

between human participants and computational metrics: (a) unachieved

agreement (Figure 6.8), (b) quantity disagreement (Figure 6.9), and (c)

allocation disagreement (Figure 6.10). In all three statistics, lower scores

indicate higher agreement.While results are difficult to interpret across all

statistics and experimental conditions, there are a few observable patterns,

supporting the main analysis. DreamSim has the overall lowest median
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scores and interquartile ranges, followed by CLIP and Tile Frequencies.

Other metrics occasionally perform better than some of the three but not

across all statistics and conditions.
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Figure 6.7: Cohen’s kappa (higher is better): inter-rater agreement between human participants and computational metrics over all
experimental conditions (subplots). Each data point indicates Cohen’s kappa comparing the similarity judgements of a
single participant against those of a givenmetric on the same subset of triplets. Each raincloud plot features individual
data points as dots, the estimated kernel density over the data as a curve above the data points, and a box plot with the
sample minimum,maximum andmedian, as well as the first and third quartiles and outliers.
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Figure 6.8: Unachieved agreement (lower is better): difference of the maximum value and Cohen’s kappa of the inter-rater agree-
ment between human participants and computational metrics over all experimental conditions (subplots). Each data
point indicates Cohen’s kappa subtracted from κmax, when comparing the similarity judgements of a single participant
against those of a givenmetric on the same subset of triplets. Each raincloud plot features individual data points as dots,
the estimated kernel density over the data as a curve above the data points, and a box plot with the sample minimum,
maximum andmedian, as well as the first and third quartiles and outliers.
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Figure 6.9: Quantity disagreement (lower is better) between human participants and computational metrics over all experimental
conditions (subplots). Each data point indicates disagreement between a single participant and a givenmetric on the
same subset of triplets. Each raincloud plot features individual data points as dots, the estimated kernel density over
the data as a curve above the data points, and a box plot with the sample minimum,maximum andmedian, as well as
the first and third quartiles and outliers.
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Figure 6.10: Allocationdisagreement (lower is better)betweenhumanparticipants andcomputationalmetricsover all experimental
conditions (subplots). Each data point indicates disagreement between a single participant and a givenmetric on the
same subset of triplets. Each raincloud plot features individual data points as dots, the estimated kernel density over
the data as a curve above the data points, and a box plot with the sample minimum, maximum andmedian, as well as
the first and third quartiles and outliers.
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6.4 STUDY 2: INTERPRETATION OF SIMILARITY DIMENSIONS

Our first study has shown that the approximation of human similarity as-

sessments through custom-tailored metrics leaves space for improvements.

In our second study, we identified the dimensions underlying the human

similarity assessment to better understand this phenomenon and inform

the future development of fast and compact similarity metrics tailored to

this domain.We thus adopt a similar methodology as in other work on the

human perception of similarity (Section 6.2.1) and re-use the perceptual

spaces from the first study identified through t-STE on the triplet judge-

ments (Section 6.3.4.1), to ask participants in focus groups to interpret their

dimensions. To prevent participant fatigue, we employed amixed design

where each condition was assigned to one focus group, tasked to provide in-

terpretations for all four dimensions of the associated perceptual space.We

obtained approval from the QueenMary Ethics of Research Committee.5

6.4.1 MATERIALS

We prepared a guide for all participants with a tutorial to demonstrate

the exercise. It shows a horizontal axis with several circles arranged by in-

creasing size from left to right. The suggested label for this example is

“pattern size” or “from small to big”. For each of the four focus groups, we

prepare an A2 printout composing all four embedding dimensions of the

corresponding condition, to be handed to each participant within.We leave

space under each axis for people to note their ideas. The dimensions are not

provided on screen to improve readability and avoid distractions.We used

the same demographics and experience questionnaire as in the first study

(Section 6.3.1) but as a printout.

5 Reference number: QMERC20.565.DSEECS23.055
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6.4.2 PARTICIPANTS

Our focus groups were composed of a total of eight participants (two per

experimental condition) with backgrounds coveringHCI and psychology,

game AI research, as well as game design and development. These parti-

cipants were recruited from the IGGI PhD programme, a doctoral training

centre spanning multiple universities and focusing on video game research

with a strong industry orientation. The study was open for everyone over

18 with normal or corrected to normal vision, which was not assessed. Parti-

cipants were incentivised with a £15 gift voucher.

Outof the eight participants, seven reported their gender asmale, andone

as female. Themedian reported age is 28. Participants in our second study

have overall higher experience with the relevant tile-based video games

than our general demographic in the first (Table 6.2).

6.4.3 PROCEDURE

The focus groups were conducted as part of a workshop run at QueenMary

University of London and lasted about 45minutes each.We ran a total of

four individual focus group sessions. All sessions followed the same pro-

cedure, described below, but focused on interpreting the dimensions from

different conditions.

At the beginning of each session, participants were informed about the

goals of the study through the participant information sheet. They were

particularly reminded that multiple interpretations for each dimension are

possible, that there are no right or wrong answers, and that their subjective

opinion counts. After giving informed consent, they were familiarised with

the task through the tutorial sheet and offered help with any remaining

questions. They were then handed the sheets with the dimensions to label,

one for each participant.

Each session was split into four parts, corresponding to the dimensions

on the paper provided to the participants. The experimenter initiated each



SIMILARITY ESTIMATION FOR THE EVALUATION OF DIVERSITY 175

part by asking the participants to write down their interpretations of the re-

spective dimension silently by themselves. After 5minutes, they were asked

to discuss their proposals with the other members to identify the best inter-

pretation, which they were instructed to write down and highlight. After

at most fiveminutes, the next part was initiated.We decided to interleave

the silent individual interpretation task to prevent forgetting about the

interpretations and to inspire and inform their upcoming interpretations.

In the debriefing, participants were finally thanked and asked to fill in

the demographics and expertise questionnaires. They were then invited to

ask any questions, and finally received their incentive, which concluded the

session.
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(a) ccs-img, dimension 1. P1: “From bespoke to generative”. P2: “Irregularity of shapes”. Consensus: “Shape irregularity (from square blocks to non-
contiguous shapes)”

(b) ccs-img, dimension 2. P1: “Inverse difficulty (from hard to easy), i. e. more blocks requiringmultiple ? (interactions?)”. P2: “Roundness, howmuch
does it look like a circle”. Consensus: “Level difficulty (from low to high)”

(c) ccs-img, dimension 3. P1: “Diagonal angularity (from squareness of level design to diagonalness)”. P2: “Amount of candy/fruit blocks compared to
other blocks (just a guess)”. Consensus: “Squareness (from vertical/horizontal to diagonal shapes)”

(d) ccs-img, dimension 4. P1: “Most to least likely generative (guess)”. P2: “Brightness (from dark to light)”. Consensus: “Brightness of tile colours
(from dark to light colours)”

Figure 6.11: Labelled embedding dimensions for condition ccs-img
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(a) ccs-pat, dimension 1. P3: “Number of straight horizontal lines; pixels are grouped”. P4: “From intricate to simple; Colors tend to loose darker shades
from left to right”. Consensus: “Pattern complexity (from intricate to simple patterns)”

(b) ccs-pat, dimension 2. P3: “More green and black, less yellow and blue as x increases”. P4: “Colors tend to go from orange-yellow colorspace to black
to green-blue colors (CMY–Black–RGB); Patterns tend too go lateral-symmetric-radial”. Consensus: “Tile colours (from bright to dark)”

(c) ccs-pat, dimension 3. P3: “Blue swaps for green and yellow”. P4: “Pattern from lateral symmetric”. Consensus: “Pattern symmetry (from vertical
symmetric to asymmetric)”

(d) ccs-pat, dimension 4. P3: “More orange, less blue as x increases”. P4: “The patterns tend tomove up to down going left to right”. Consensus: “Tile
colours (from blue to orange)”

Figure 6.12: Labelled embedding dimensions for condition ccs-pat
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(a) loz-img, dimension 1. P5: “Symmetrical arrangement of tiles high – low”. P6: “Asymmetry”. Consensus: “Symmetry (from high to low)”

(b) loz-img, dimension 2. P5: “Interesting patterns low – high”. P6: “Complexity”. Consensus: “Interesting patterns”

(c) loz-img, dimension 3. P5: “Colours variation low – high”. P6: “Incohesion”. Consensus: “Colourfulness (from low to high)”

(d) loz-img, dimension 4. P5: “Coherence low – high”. P6: “Complexity”. No consensus

Figure 6.13: Labelled embedding dimensions for condition loz-img



SIMILARITY ESTIMATION FOR THE EVALUATION OF DIVERSITY 179

(a) loz-pat, dimension 1.P7: ‘From “game started” to “20minutes in”’. P8: “Connected components of color (not necessarily of different colors), ignoring
outer side rectangles”. Consensus: “Complexity (from low to high)”

(b) loz-pat, dimension 2. P7: ‘I can’t unsee Zelda, so I’m gonna say from “More hidden secrets” –> “less hidden secrets” or “Exploration-focused
gameplay” –> “Challenge-focused gameplay”’. P8: “No idea”. No consensus

(c) loz-pat, dimension 3. P7: ‘“Closed-up areas” –> “Open-ended areas”; Maybe something like “linear progression” –> “Open worlds”; Colour/amount
of yellow seems to be a factor too. Maybe “from coast to desert”???; Theme’. P8: ‘Different tile type “theme”; cutscene –> start –> water –> land –>
yellow (?)’. Consensus: “Level theme”

(d) loz-pat, dimension 4. P7: ‘More unique to less unique? In the sense of “tile is never repeated in game” –> “tile is often repeated”; Maybe theme again.
Yellowish to blueish; Challenging desert section to more relaxed water section. Hard to easy?’. P8: ‘Yellows –> blues’. No consensus

Figure 6.14: Labelled embedding dimensions for condition loz-pat
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6.4.4 RESULTS

Ourfindings reflect a diverse rangeof perspectives, echoingourparticipants’

varied backgrounds. They noted the difficulty of the labelling task and

agreed that discussionswithin the groups benefited their individual insights.

While some groups found it easy to determine consensus labels, not all

groups succeeded. All embedding dimensions with their assigned labels are

shown in Figures 6.11 to 6.14.We compare the consensus labels between

conditions in Table 6.3. Below, we summarise the most important findings.

ccs-img Theparticipants believe shape to be of high importance.Their la-

bels include ‘squareness’ (dim. 3) and ‘shape irregularity’ (dim. 1).Oneparti-

cipant furthermentions ‘roundness’ (dim. 2).Thegroupassigns ‘brightness’

of tile colours as another label (dim. 4).

ccs-pat ‘Tile colours’, and its range from bright to dark as well as from

blue to orange, was assigned as a label to two dimensions (2 and 4). The

group further agreed on ‘pattern complexity’ (dim. 1) and ‘pattern sym-

metry’ (dim. 3).

loz-img The group highlighted ‘symmetry’ and ‘colourfulness’ as pos-

sible labels (dim. 1 and 3, respectively) and agreed on ‘interesting patterns’

(dim. 2). One participant further mentioned the ‘complexity’ of patterns in

relation to two dimensions (2 and 4).

loz-pat One participant misinterpreted the tile colours to indicate func-

tionality (blue for water, yellow for desert) and thus focused on game design

aspects, describing ‘themes’ of different levels (dim. 3) and the difficulty of

solving them. However, the participant also commented on the repetition

of tiles (dim. 4), alluding to the distribution of tile types. The group only

gave one relevant consensus label: ‘pattern complexity’ (dim. 1).
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Table 6.3: Consensus labels for dimensions of the perceptual embeddings (rows) as
proposed by individual focus groups per condition (columns) in study 2
(Section 6.4).

Dim. ccs-img ccs-pat loz-img loz-pat

1 Shape irregularity (from
square blocks to non-
contiguous shapes)

Pattern complexity
(from intricate to simple
patterns)

Symmetry (from high to
low)

Complexity (from low to
high)

2 Level difficulty (from
low to high)

Tile colours (frombright
to dark)

Interesting patterns —

3 Squareness (from vertic-
al/horizontal to diagonal
shapes)

Pattern symmetry (from
vertical symmetric to
asymmetric)

Colourfulness (from low
to high)

Level theme

4 Brightness of tile colours
(from dark to light col-
ours)

Tile colours (from blue
to orange)

— —

6.5 DISCUSSION

We discuss the findings from our first study (Section 6.3) to contribute

to our first research question (Which existing metrics approximate the human

similarity perception of grid-based video game levels best?). For this, we primarily

focus on ametric’s approximation capabilities as quantifiedbymean squared

error in our comparison of similarity matrices, since computing pairwise

similarities comes closest to the application scenarios in game development

and research.We support these findings with the result from the inter-rater

agreement analysis (Section 6.3.4.3), which allows for a more direct, albeit

limited, comparison of the metrics to the participant judgements.

The results suggest that CV-based similarity metrics (CLIP, DreamSim)

provide the overall best approximation to the collected participant judge-

ments, outperforming thePCGexpertmetrics andgeneral-purposemetrics.

In particular, results for the artificial neural network-based image embed-

ding DreamSim exhibit the overall lowest approximation error and highest

agreement when compared to our participant judgements.While this may

beunsurprising, given that the image embeddingwas specifically fine-tuned

to align with human perception of synthetic natural images, our results con-

firm that this equally benefits similarity estimation of video game levels. Yet,
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accuracy is not everything. A downside of artificial neural network-based

image embeddings however is their size, complexity and dependence on

specialised hardware for fast inference. For example, DreamSim requires a

CUDA-compatible GPUwith 1.6 GBmemory available to load the model

(additional memory required to compute image embeddings). This can be

problematic, considering the limited resources available when relying on

suchmetrics in games at runtime, in particular onmobile devices. Further-

more, sub-symbolic approaches (artificial neural networks) are limited in

their transparency, as it is more difficult to explain why a particular pair of

levels is attributed to high similarity. In contrast, symbolic approaches (the

PCG expert metrics) with their transparent design choices canmore easily

be broken down into specific rules.

Between the three expert metrics from the PCG literature (with a total

of eight configurations), we can observe big differences in performance.

The Symmetry metrics in any of its configurations only seem to capture a

single aspect relevant to our sample of participants (cf. Table 6.3), yielding

high approximation errors and overall low, often even negative agreement.

With the closely related Tile Pattern and Tile Frequencies (identical to the

tile pattern size 1× 1) metrics, we observe a correlation in the results: the

larger the patterns, the higher themetric’s approximation error (Figure 6.5).

This correlation has a simple explanation: the larger the patterns, the fewer

patterns there are in a level to compare. That is to say, a lower granularity of

patterns (in the extreme case 1× 1, i. e. Tile Frequencies) allows for a more

nuanced comparison between levels. If there is little data to compare (e. g.

only a few large 4× 4 patterns) it will be difficult to determine whether two

levels are slightlymore similar than another pair.This can lead tohigh errors

in our similarity matrix analysis. Furthermore, our collection of stimuli is

a particularly small dataset, which likely does not provide much overlap

in patterns across levels. This explanation is supported by the results on

Legend of Zelda levels (loz-img, loz-pat), which share more patterns due

to the common layout of rooms. Consequently, Tile Patterns of size 2× 2

and 3 × 3 perform much better on levels from this title than on Candy

Crush Saga levels. Tile Frequencies being the third-best approximating
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metric is surprising, given that this metric only compares the number of

different tiles in a level but entirely disregards their positions. Nonetheless,

our results suggest that Tile Frequencies is a reliable PCG expert metric

across all experimental conditions.

The effect of different level structures on metric performance can be

observed in the results for Hamming Distance, the best out of two general-

purpose metrics. Hamming Distance performsmuch better on Legend of

Zelda than on Candy Crush Saga levels. As mentioned above, the common

structure of Legend of Zelda levels puts a focus on the differences in the

room interiors between levels. All rooms are the same size and are surroun-

ded by walls and doors. It is thus more important whether rooms are filled

with obstacles, enemies or staircases. For participants in ourfirst study, these

details may have also been the most similarity-relevant criteria. In contrast,

Candy Crush Saga levels can have very different shapes and compositions,

making it a more difficult task for a tile position-sensitive metric. Given

a more homogeneous collection of Candy Crush Saga levels, Hamming

Distance might have performed better on this title. More work is required

to test this hypothesis. Hamming Distance has a competitive performance

when levels share a common structure and differences between them consist

in smaller but important details.

One may argue that in our first study participants with experience of

the relevant video game titles (Candy Crush Saga, Legend of Zelda) or

similar ones from the same genre might have a better idea of the expressive

range amongst levels, therefore making different similarity judgements.

Even more so, the perception of expressive ranges between participants,

even with similar experiences, might differ. Yet, the design of the triplet

judgement task as two alternative forced choice aims to prevent exactly

these variances. Participants are only asked to make a simple binary choice,

rather than a more nuanced judgement of similarity.

Our second study (Section 6.4) allows us to probe this assumption, and

highlights two principal similarity-relevant criteria in this specific scenario

as an answer to our second research question (What are the dimensions that

govern players’ similarity perception?). First, the design of patterns in terms of
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shape (‘irregularity’, ‘squareness’), symmetry and tile composition (‘com-

plexity’). Second, the choice of sprites (‘tile colours’, ‘colourfulness’ and

‘brightness’), whichmight explain the performance advantage of image em-

beddingmetrics, DreamSim and CLIP, over the tile representation-based

metric.While symmetry along various axes is already covered by specialised

metrics compared in our study,most other criteria are not explicitly accoun-

ted for. In particular, the visual qualities of the sprite design are not reflected

in tile representations.Moreover, participants also thought about gameplay-

specific criteria, like level ‘difficulty’ and game narrative (‘themes’), which

are not yet covered by anymetric. For Legend of Zelda, it is easier to infer

the gameplay of a level only from its layout, sincemost of its elements (walls,

doors, steps) are static and players can easily imagine how tomove through

a room. However, game dynamics are muchmore complex and random in

Candy Crush Saga, where tiles that are cleared from the level are replaced

by new ones falling from the top.We discuss the difficulty of extending our

study setup to include aspects of gameplay in future work (Section 8.1).

All in all, in the context of video games, expert metrics find their purpose

in providing robust performance in a dynamic, potentially low-resource

environment. These findings can contribute to the future development of

custommetrics that meet these requirements and are more closely aligned

with human perception.

6.5.1 STUDY LIMITATIONS

The present work focuses on visual similarity estimation in two tile-based

video games.We note two limitations on generality. First, we have not taken

into account other game genres beyond tile-based games.Moreover, con-

strained by the triplet comparison data collectionmethodology, we could

only include a limited amount of stimuli. We tried to mitigate this con-

straint by systematically selecting stimuli for diversity and through our

mixed design.While we selected our two game titles to capture diversity

and popularity in the space of tile-based games, there exists much more
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variation in video game titles that could not be accounted for. Second, the

same applies to variation within the levels of each title which, despite our

systematic procedure, couldnot be captured in its entirety.Crucially though,

we hold that the dimensions governing similarity between levels here can

inform stimulus selection in future studies extending our work.Moreover,

we are confident that the choices of games and levels in this work reflect

many use cases in the industry.

Beyond limitations to generality, we note that our study only considers

similarity judgements of tile-based video games with respect to visual inform-

ation.We agreewith relatedwork on playermodelling in that functional and

dynamic elements of gameplay such as power-ups or tile cascades are also

important determinants of player perception, experience and behaviour.

Minor differences in the layout of any two levels may have little effect on

their visual similarity, yet might make a big difference in terms of gameplay.

While many of these elements can be identified visually, we expect players’

similarity assessment to be considerably shaped by their active interaction

with them. This research thus represents a specialised lens on visual and

static game content, contributing to the future development of holistic

models of players’ similarity judgement.

The setup of experimental conditions and in particular the fact that CV

metrics receive different inputs depending on theRepresentation of the con-

dition, limits our study in that we do not cover all possible comparisons for

the image-based similarity metrics.We thus do not investigate the discrep-

ancies between the participant judgements across visual representations

while keeping the metric representation static. However, we deliver on our

plans. As the input to the image-basedmetrics is varied based on the con-

dition to match what the participants see, we get direct comparisons for

how well the image-based metrics approximate the participant judgements

for that condition. In this work, we focus on this aspect and leave other

comparisons for future work.We acknowledge that the mapping from img

to pat representation does encode some assumptions around the similarity

of the different level objects. However, these assumptions do not stem from
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our own biases but instead rely on the experience of the domain experts for

the respective games.

We identify two limitations stemming from the design of the stimuli

selection process. First, selecting stimuli that cover the wide range of level

designs increases the difficulty of the triplet judgement task. We argue,

however, that the data collected from forced-choice judgement tasks is still

useful as overall relations between stimuli are captured in the aggregated

judgements of a large groupof participants.Our results confirm this; despite

the difficult triplet combinations, the best metrics compared in our work

were able to approximate stimuli relations with very little error. Second,

our conclusions about the performance of CLIP are insofar limited as we

also leveraged CLIP in the stimuli selection procedure. This choice in the selection

process allowed us tomaximise the diversity of levels, thus benefiting the

fair evaluation of all metrics, at the expense of introducing a bias on the

performance of a single model.We chose CLIP for the selection procedure

as we expected it to be amongst the strongest candidates, thus leavingmore

space for fine-grained differentiation between the other metrics. And des-

pite our use of CLIP in the selection process, our results point to a different

CV-basedmetric as the best-performingmetric: DreamSim.We considered

multiple other stimuli selection strategies. Here we discuss the advantages

and drawbacks of three options which ultimately led us to adopt the ap-

proach presented earlier. The first alternative, random sampling of stimuli,

is the most unbiased approach, yet unlikely to cover the diverse level design

space (e. g. out of 2,792 Candy Crush Saga levels we were only able to select

17). Second, a selection of stimuli informed by a pilot study is also relatively

unbiased. However, participants would have to assess an overwhelmingly

large amount of stimuli (ccs: 2,792 levels; loz: 225 levels). A cognitively very

demanding task that would require additional recruitment of reliable parti-

cipants. Third, instead of CLIP, we could use a different embedding (e. g.

another CV-basedmodel).While this would not introduce a bias in favour

of any of themetrics compared in this work, it would nonetheless introduce

a bias towards a different metric for which the relations to the other metrics

are not explicitly assessed.
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We leveraged inter-rater agreement statistics to facilitate direct compar-

isons of metric performance with raw data from individual participants.

However, overall we only found low to moderate agreement between parti-

cipants andmetrics. Since triplet comparisons only require binary decisions,

we had no information on participants’ confidence in their ratings.We de-

liberately chose not to leverage disagreement ratios as a proxy for rating

confidence due to the low number of samples per stimulus. Future studies

could include an additional confidence rating or leverage a different rating

task to facilitate a closer comparison between human judgements and the

continuous similarity values provided bymetrics.

The focus group labelling task in our second study is a naturally noisy

process because 1) labels are subjective and 2) the dimensions of the percep-

tual embeddings are the product of noisy participant judgements. Given the

difficulty of the labelling exercise, some groups were not able to provide a

consensus label for somedimensions. Yet, rather than labelling exhaustively,

our goal was to obtain as much relevant information as possible. The labels

identified in our second study nonetheless are a valuable resource to explain

the total variance of the similarity judgements.We were only able to obtain

data from a relatively small group of participants per condition. More parti-

cipants would have provided higher robustness, as the quality of consensus

labels benefits from a variety of perspectives. However, our decision on an

on-site study to limit distractions and foster discussion imposed constraints

onhowmanyparticipants could be possibly recruited.Given the complexity

of the domain and task, we hold that our findings provide good pointers for

future work. Moreover,We published our dataset and interpretation scales

to enable other researchers to further validate and extend our findings.



Chapter 7

RELATED WORK

In this chapter, we report on the related work for the four research projects

introduced in Chapters 4 to 6.While no prior work evaluated the benefits

and drawbacks of using generative models with evolutionary algorithms

before our systematic study (Chapter 4), we collect some related works

that effectively use models’ latent spaces. Drawing from different fields of

research, we review several measures of diversity for their applicability to

generative machine learning. We then give an overview of related work

on dataset biases in machine learning, in particular computer vision and

classification tasks. The effects of dataset biases on generative models have

received little attention. Drawing on these insights, we point out that redu-

cing biases by simply addingmore examples to a dataset is often not a trivial

task, requiring more principled approaches.While this gives further motiv-

ation to apply our work to efforts in diversity, equity, and inclusion (DEI),

such work is beyond the scope of this thesis. As related work, we thus sur-

vey different methods that address the under-representation of minority

groups in generative models and compare them to ourmode balancing ap-

proach (Chapter 5). Finally, we cover work related to the human perception

of similarity by outlining the conventional data collection methodology,

highlighting the lack of studies on similarity perception in video games, and

comparing our study (Chapter 6) to related work in computer vision.
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7.1 DATA BIASES IN MACHINE LEARNING

Biases in datasets have been studied from the perspective of machine learn-

ing under different names, including sample selection bias (Heckman, 1979;

Zadrozny, 2004), covariate shift (Shimodaira, 2000), and class imbalance (Jap-

kowicz & Stephen, 2002). The authors focus on how dataset biases can

limit the generalisability of learnedmodels, Technical impact of
biases

in particular for classification

tasks in supervised learning. Torralba and Efros (2011) present an analysis

of common computer vision datasets for object recognition and propose

measures to quantify capture bias, category or label bias, and negative set bias.

A de-biasing method is presented in Khosla et al. (2012) that explicitly

defines the bias associated with each dataset by learning an individual bias

vector. The method attempts to then approximate a model of the common

“visual world” with better generalisation ability by undoing the bias from

each dataset. Tommasi et al. (2017) pick up these two previous works, ex-

tend the dataset bias analysis to deep learning-based convolutional feature

extraction methods, and propose an additional measure to quantify the

performance of the de-biasingmethod (Khosla et al., 2012). They conclude

that the evaluated dataset biases can be reduced but not eliminated.

With the increasing use of computer vision technologies, Social impact of
biases

the attention

shifted to the technology’s impact on the general public and the effect of

dataset biases on individuals, specific demographics and society at large

(Lohia et al., 2019). As high-stakes decisions in applications (e. g. credit,

employment, criminal justice) become automated, pressure is increasing

to address dataset biases and to ensure fairness in classification (Dwork et

al., 2012). A mathematical formulation of fairness has been proposed by

Friedler, Scheidegger and Venkatasubramanian (2016). Frameworks that

aim to ensure ‘non-discriminatory’ predictions have beenpresented as equal-

ised odds (Hardt et al., 2016) and as disparate mistreatment (Zafar et al., 2017).

Recent studies further look at race and gender bias in commercial gender

classification systems for image data (Buolamwini & Gebru, 2018), and

gender biases in natural language and its effect on image captioning and
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semantic role labelling (Zhao et al., 2017; Hendricks et al., 2018). Various

authors highlight the problem of bias amplification, where bias is not only

learned from data but increased by amodel (Bolukbasi et al., 2016; Zhao

et al., 2017; Hendricks et al., 2018).

Crucially, simply fixing a dataset bias Balancing datasetsby balancing the number of specific

examples is not trivial and not always possible. In the discriminative setting,

Stock and Cisse (2018) find that models classify images as “basketball”

based on the presence of a black person, even though white people appear

equally as often in “basketball” images. The authors hypothesise that this

stems from the dataset containing more images of white people overall.

The classificationmodel thus, responding to a spurious correlation, assigns

the “basketball” label based on the appearance of the person rather than

the activity. In this case, improving the dataset would require balancing all

other classes (e. g. “ping-pong”, “rugby”, “baseball”, “volleyball”) to a similar

degree as the “basketball” class. In the generative setting, without a clear

separation of images by classes, such imbalances are evenmore difficult to

identify and address.

7.2 DE-BIASING GENERATIVE MODELS

Existing work on data biases in generative models primarily focuses on the

under-representation of minority groups. The objectives of different ap-

proaches range frommitigating such biases to improvingminority coverage,

i. e. achieving better image fidelity for under-represented data examples.

Some approaches employ a weighted sampling scheme where weights are

derived from density ratios, either via an approximation based on the dis-

criminator’s prediction (Lee et al., 2021) or via an additional probabilistic

classifier (Grover et al., 2019). Others propose an implicit maximum likeli-

hood estimation framework to improve the overall mode coverage in GANs

(Yu et al., 2020). These methods either depend on additional adversarily

trainedmodels or onmore problem-specific solutions through hybridmod-

els that do not necessarily generalise to other settings. Ourmode balancing
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approach (Chapter 5), instead, has twomajor benefits over this relatedwork.

First, it is model-agnostic and thus potentially applicable to a wide range of

network architectures and training schemes. Second, it only adds an offline

pre-computation step before conventional training procedures and during

training solely intervenes at the data sampling stage.

Authors of previous work further argue for increased diversity but do not

evaluate explicit measures of diversity. Results are reported on the standard

metrics IS, as well as FID and PRwhich rely on the training dataset for ref-

erence (Section 2.4). Consequently, they can only estimate sample fidelity

andmode coverage as present in the data, but not independently of it. In

our work onmode balancing (Chapter 5), we instead evaluate measures expli-

citly designed to objectively quantify diversity without relying on dataset

statistics for reference (Section 2.5).



Chapter 8

CONCLUS IONS

ContributionsThe contributions presented in this thesis cover the topic of diversity in

generative machine learning across multiple research modalities, including

conceptual and analytical work, formalisation, systematic experimentation,

and studies with human participants.

We coined the term active divergence to describe a common theme in the

artistic uses of generative models where people consciously break, tweak or

otherwise intervene in a data-driven generative process to produce cultur-

ally valuable but from a pure modelling perspective sub-optimal artefacts.

We presented a taxonomy and survey of such active divergence techniques

in generative deep learning, highlighting their potential for computational

creativity research.We developed a formal framework to automate generat-

ive deep learning for artistic purposes that provides opportunities to hand

over creative responsibilities to a generative system. For this, we defined

the conventional generative deep learning pipeline and contrasted several

deviations in the artistic settings, resulting in an overview of targets for

automation.

To analyse the capabilities and limitations in expressivity of generative

models, we performed a series of experiments evaluating the output di-

versity of a VAE in a principled way. Empirical evidence demonstrates that

QD search in parameter space yields a more diverse collection of outputs

than search in the VAE latent space. This suggests that the VAE used in

the experiments is limited in its expressivity, i. e. the capacity to generate

artefacts beyond the training examples.

To increase the output diversity of generative models, we introduced di-

versityweights, amethod to derive aweight vector over the examples in a train-

ing dataset, which indicates their individual contribution to the dataset’s
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overall diversity.With thismode balancing approach, we changed the concep-

tual objective from covering all modes in the training data exactly to balan-

cing them such that they are equally likely under themodel. The weights al-

low training a generativemodel with a diversity-weighted sampling scheme,

such that the model’s output diversity increases. Our work is motivated by

potential benefits for computational creativity applications which aim to

produce a wide range of diverse output for further design iterations, ran-

ging from artistic to constrained to scientific creativity.We also highlight

a connection to issues of data bias in generative machine learning, in par-

ticular data imbalances and the under-representation of minority features.

The impracticality of easily mitigating data imbalances in an unsupervised

setting further motivated our work. In a proof-of-concept study, we experi-

mentally demonstrated that our method increases model output diversity

when compared to the standardGAN training process. The results highlight

a trade-off between artefact diversity and artefact typicality, i. e. the extent

to which an artefact is a typical training example. Our method provides

control over this trade-off via a loss balance hyperparameter.

As a step towards better measures of diversity, in Chapter 6, we sought

to answer two research questions: (1)Which existing metrics approximate

the human similarity perception of grid-based video game levels best? And,

as a stepping stone toward the development of better metrics, (2) which

dimensions govern the similarity perception in this scenario?Of immediate

practical relevance, we probe the common belief that the development of

good similarity metrics requires a deep understanding of games as an ap-

plication domain. To this end, we compared 7metrics in 12 configurations,

grouped into custom-made PCG, general-purpose, and computer vision

metrics.We found that the DreamSim image embedding (S. Fu et al., 2023)

exhibits the overall best performance (low overall approximation error and

high agreement with human participants), followed by the CLIP embed-

dingmodel (Radford et al., 2021) from the same group of CV-basedmetrics.

Since such artificial neural network-based approaches can be too resource-

intensive for deployment within a video game, we recommend their use for

the offline generation of video game assets. As an alternative, for in-game
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use, we found that Tile Frequencies (Summerville et al., 2017), a simple

baseline metric from the PCG literature more suitable for low-resource

environments, shows the next-best performance. Furthermore, Hamming

Distance is competitive with Tile Frequencies when levels share a common

structure and differences between them consist of smaller but important

details, e. g. our collection of Legend of Zelda levels.

However, our findings also show that there is room for improvement.

Opportunities for advancementsof similaritymetricswere revealed through

our second study, in which we asked focus groups with relevant experience

to interpret thedimensionsunderlying the similarity judgement as captured

by our data. Participants particularly highlighted the importance of pattern

design in terms of shape, symmetry and tile composition, as well as the

choice of tile sprites as similarity-relevant criteria of human perception in

this specific domain. Our findings contribute to a better understanding of

similarity estimation in people and its alignment with existing metrics for

tile-based video game levels, and through this inform similarity estimation

via computational metrics.

Together, ourfindings can advance awide rangeof tasks in research and in-

dustry, from developing better player models, more satisfying PCG, believ-

able NPCs, and increasingly plausible automated play-testing approaches.

They thus benefit both the gameAI and game user research communities

and enable new work at the crossroads.

Furthermore, wemade several code repositories publicly available.

8.1 FUTURE WORK

Here we discuss potential extensions to the work presented in this thesis.

The formulation of our framework for the automation of generative deep

learning for artistic purposes (Chapter 3) stems from a time before the de-

velopment of large consumer generative interfaces such as Google Gemini

and OpenAI’s Dall-E and ChatGPT. Future work could thus study how

deep learning researchers, practitioners and artists work withmore recent
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generative systems, in particularwhere they have added and could add levels

of automation. Some of the techniques that artists apply, such as dataset cur-

ation and iteration, as well as the selection of generated outputs, are prom-

ising avenues for automation and require further investigation. Applying

our framework to practical projects would further provide demonstrative

examples of how some of the challenges in automation can be tackled and

show the surprising results that automation can afford. For the evaluation of

such demonstrative examples, we consider the FACE descriptive model of

creative acts an appropriate choice (Colton, Charnley & Pease, 2011; Pease

&Colton, 2011). In the formulation of our framework, we only brieflymen-

tioned the automation of creative responsibilities via the usage of machine

learning (ML) models. Multiple models can be trained and deployed within

the same systemor communicate across systems, adding interaction-awareness

as an aspect of creative self-awareness (Linkola et al., 2017). Our framework

could thus be extended by considerations for organisational structures, in

which we think of individual models as agents in a multi-agent system. To

use our framework in co-creative applications, augmenting a systemwith

the ability to communicate its adjustments and intentions would be espe-

cially beneficial. Moreover, to address our framework’s limitations, further

work is needed to consider applications which use generativeDL but are not

artistically focused.This couldpotentially informamore general automated

ML framework, which would benefit frommore formal definitions.

More work is needed to extend our first results on the limitations of

generative models (Chapter 4). For better generalisability, a large-scale

systematic study of the individual parts of our setup and their influence

on expressivity is needed. This could include testing different priors for a

VAE latent distribution, the size of the training dataset, mapping training

examples to a higher-dimensional latent space, and different architectures

of the generative model. Comparing the performance of a VAE to that of

auto-regressive, adversarially-trained, flow-based or transformer-based

models could highlight strengths and weaknesses of individual modelling

techniques and architectures. It would allow for a more general understand-

ing of their generative capabilities and limitations. Furthermore, following
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our discussion in Section 4.6, we propose future work to better understand

the compression afforded by a generative model’s latent space and its be-

nefits in facilitating a search space of smaller dimensionality. For this, we

suggest using an experimental setup in which the complexity of a search

space can be arbitrarily increased to find the point at which QD search in

latent space outperforms search in parameter space. For example, through

procedurally generating grid-based video game levels for a title like Candy

Crush Saga, Legend of Zelda, or Overcooked (Carroll et al., 2019; Fontaine,

Hsu et al., 2021). In such a scenario, the complexity of parametric search

grows exponentially as the size of a level increases, while the dimensionality

of the corresponding latent search space could, subject to some constraints

and trade-offs, be held constant. This would allow us to quantify the degree

of complexity at which the compression of a learned latent space facilitates

QD search which would otherwise have worse performance or be entirely

infeasible in parameter search.

Our work on diversity weights can be improved in several ways. First, by

refiningourmethod, in particular, the trainingprocedure to improveoverall

sample fidelity. For this, a thorough analysis and systematic comparison

to related work is needed. Furthermore, the loss balance hyperparameter

could be tuned automatically by including it as a learnable parameter in

the optimisation procedure. Apart from our gradient descent approach,

there might be alternative exact or approximate methods for the diversity

weight optimisation, e. g. through analytical solutions or via constraint

optimisation.

Second, generalisability could be extended beyond the proof-of-concept.

For this, experiments with other generativemodels and on bigger andmore

complexdatasets are required todemonstrate the scalabilityof our approach.

Since our method is architecture-agnostic, there remainmany opportun-

ities for future work to understand the effect and potential benefits of our

method in other modelling techniques. As GAN training is notoriously un-

stable and requires careful tuning, other modelling techniques might prove

more appropriate. Further experiments with human data, e. g. images of

human faces, or datasets that otherwise concern people can demonstrate
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the capability of our method tomitigate issues of DEI resulting from data

imbalances. Moreover, empirical studies will be necessary to investigate

how the shift frommode coverage to mode balancing can support diversity

in a large range of CC applications.

There exists an inconsistency between the Diversity of order q and the

Vendi Score (VS). The authors of bothmeasures claim that their measure

yields an effective number (Hill, 1973), representing the count of absolutely

dissimilar items of equal abundance in a dataset. However, given the same

data, the measures do not agree, producing different scores and thus differ-

ent ‘effective numbers’. Future work is required to determine which of the

twomeasures does in fact give an effective estimate and, if the twomeasures

are related, what transformation of one score to the other explains their

disagreement.

Our findings on human similarity perception can informmetric selection

in game development and as an element of research studies on games more

generally. Moreover, they highlight potential avenues for improvement of

existing metrics and the development of future ones.We particularly ad-

vocate supporting further research on this topic through various uses of

machine learning. To select a small subset of stimuli from a large dataset

that covers the variation in the dataset, an auto-encoding artificial neural

network can be trained on the full dataset. A subset of stimuli can then

be selected based on their pairwise distances in the model’s latent space.

Other stimuli selection strategies may be applied in future work: random

sampling, grid-based selection, etc. To further advance data-driven met-

rics, we can fine-tune an existing image embedding on a curated dataset

of annotated video game levels to obtain a specialised embedding space

for the video game domain. Moreover, as DreamSim (Section 6.2.2) has

demonstrated, we can bootstrap an ensemble ofmetrics to train a prediction

model of human judgement on top of the metrics’ respective calculations.

Yet, these efforts have to be assessed in comparison to the performance of

much simpler general-purpose metrics. In the video game context, in par-

ticular for applications on-device, only limited resources might be available

which need to bemanaged carefully. This work can informwhichmetrics to
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include in further benchmarks.We note that this work contributes to the

bigger effort of developing holistic models of human similarity judgement

in games.Our study setup leaves open for futurework further investigations

of agreement with CV metrics. Our study shows that when participants

and image-based metrics are given the same level representation (img or

pat), CVmetrics perform best overall. But further study is needed to un-

derstand their performance in scenarios where participants are shown the

same level screenshots (img) between conditions, while the input to image-

basedmetrics is changed from img to pat. The publication of our data and

implementation opens these avenues for future work to the whole research

community.Morework is needed to extendour analysis to other video game

titles, as well as alternative mappings from level objects to abstract colour

tiles.While we have focused on the perception of visual similarity in static

content, we expect players’ similarity judgement to be also shaped by the

dynamic gameplay behaviour that levels afford, and the experiences they

are expected to provide. Consequently, an important avenue for futurework

will be to understand how these static and dynamic aspects can be combined.

For example, through representations that canmore explicitly encode game-

play, as used in the Video GameAffordances Corpus (VGAC) (Bentley &

Osborn, 2019). This is particularly important for Candy Crush Saga, where

complex game dynamics make it difficult to infer the gameplay of a level

only from a static image of its initial state. If we consider video games in

which players freely move a character around in a three-dimensional world,

it becomes obvious how important experiencing the gameplay of a partic-

ular level is to judge its similarity to another level. In future studies, such

complex gameplay dynamics thus require participants to play a video game

before being able to make a meaningful judgement. Finally, while the fo-

cus of Chapter 6 was on similarity, we advocate for research into howwell

the identifiedmetrics can estimate the human perception of diversity as a

natural next step toward supporting a wider range of game AI applications.
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